Kalkon ve Hidroksil Yan Grupları İçeren Yeni Metakrilat Polimerinin Sentezi, Karakterizasyonu, Termal ve Elektriksel Davranışları

Bu çalışmada, yan grupta kalkon ve hidroksil grubu bulunan yeni metakrilat polimerinin dielektrik vetermal özelliklerinin incelenmesi amaçlanmıştır. Bu amaç için ilk olarak 1-(4-hidroksifenil)-3-(4-metoksifenil)prop-2-en-1on) bileşiği ile epiklorhidrin etkileştirilerek 3-(4-metoksifenil)-1-(4-(oksiran-2-ylmetoksi) fenil)prop2-en-1-on (EP-MKAL) bileşiği sentezlendi. İkinci olarak EP-MKAL ile metakrilikasitin reaksiyonundan 2-hidroksi-3-(4-3-(4-metoksifenil)akriloil)fenoksi)propil metakrilat (MKAL-MET)monomeri elde edildi. Daha sonra bu monomerin serbest radikalik polimerizasyon yöntemi ilehomopolimeri P(MKAL-MET) hazırlandı. Sentezlenen bileşiklerin ve polimerin yapı karakterizasyonlarıFT-IR, 1H ve 13C-APT NMR yöntemleri kullanılarak yapıldı. Polimerin termal davranışları DSC ve TGAtermal analiz metotları ile belirlendi. Farklı ısıtma hızlarında (5, 10, 20, 30 ve 40 oC/dk) ölçülen TGAsonuçlarından Flynn-Wall-Ozawa (F-W-O) yöntemine göre polimerin ortalama aktivasyon enerjisi141,26 kJ/mol olarak hesaplandı. P(MKAL-MET)’in dielektrik sabiti, dielektrik kayıp faktörü ve aciletkenlik değerleri farklı sıcaklıklarda (298K, 318K, 333K, 353K) frekansın bir fonksiyonu olarak (100 Hzile 30 kHz arasında) empedans analizör cihazı ile belirlendi. Polimerin 1 kHz sabit frekans ve odasıcaklığındaki dielektrik sabiti, dielektrik kayıp faktörü ve ac iletkenlik değerleri sırasıyla 5,34; 3,73 ve1,08x10-8 S/cm olarak bulundu. Ayrıca polimerin EuCl3 ile farklı oranlarda (ağırlıkça %3, %5 ve %10)kompozitleri hazırlanarak dielektrik özellikler üzerindeki etkisi araştırıldı. EuCl3 konsantrasyonu arttıkçadielektrik sabiti, dielektrik kayıp ve ac ilektkenlik değerlerinde, saf polimere göre önemli artış gözlendiğigörülmüştür.

Synthesis, Characterization, Thermal and Electrical Behaviors of A New Methacrylate Polymer Bearing Chalcone and Hydroxyl Side Groups

The aim of this study is to determine the dielectric and thermal properties of the new methacrylate polymer with chalcone and hydroxyl groups at side group. For this purpose, firstly 3-(4-methoxyphenyl)- 1-(4-(oxiran-2-ylmethoxy)phenyl)prop2-en-1-one (EP-MKAL) was synthesized by reacting (1-(4- hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-yl) compound and epichlorohydrin. Afterwards, 2- hydroxy-3-(4-3-(4-methoxyphenyl)acryloyl)phenoxy)propyl methacrylate (MKAL-MET) monomer was obtained from the reaction of EP-MKAL with methacrylic acid. The homopolymer P(MKAL-MET) was prepared by the free radical polymerization method. The structures of compounds were characterized by FT-IR, 1H and 13C-APT NMR methods. The thermal behaviors of the polymer were determined by using DSC and TGA thermal analysis methods. According to the Flynn-Wall-Ozawa (F-W-O) method, the average decomposition activation energy of the polymer was determined as 141.26 kJ / mol with using of the TGA thermograms at different heating rates (5, 10, 20, 30 and 40 oC/min). The dielectric and electrical properties of P(MKAL-MET) were determined by the impedance analyzer (between 100 Hz and 30 kHz) as a function of frequency against increasing temperature (298K, 318K, 333K, 353K). Dielectric constant, dielectric loss and ac conductivity of P(MKAL-MET) were determined 5.34, 3.73 and 1.08x10-8 S/cm, respectively at room temperature and 1 kHz. In addition, 3%, 5% and 10% by weight EuCl3 composites were prepared, and their effects on dielectric properties were investigated. The increasing EuCl3 concentration, dielectric properties were significantly increased compared to pure polymer.

___

  • Abdel-Gawad, NMK, El Dein, AZ, Mansour, DEA, Ahmed, HM, FzDarwish, MM, Lehtonen, M, 2017. Multiple enhancement of PVC cable insulation using functionalized SiO2 nanoparticles based nanocomposites. Electric Power Systems Research, 163, 612-625.
  • Afifi, MA, Abd eł-wahabb E, Bekheet, AE, Atyia, HE, 2001. Effect of annealing on the ac conductivity and the dielectric properties of ln2Te3 thin films. Acta Physica Polonica A, 94, 4-9.
  • Ayaz, N, 2012. Benzilmetakrilat ile 2-Okso-2H-Kromen-7il Metakrilat kopolimerlerinin Sentezi ve Karakterizasyonu, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, 143.
  • Bezgin, F, 2011. Kumarin İçerikli Polimerlerin Sentezi Spestroskopik ve Dielektrik Özellikleri, Doktora Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, 162.
  • Biryan, F, 2013. Hidroksil Yan Gruplu Bazı Metakrilat Polimerlerin Sentezi, Termal Ve Dielektriksel Özelliklerin İncelenmesi, Yüksek Lisans Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, 121.
  • Biryan, F, Demirelli, K, 2016. A methacrylate monomer bearing nitro, aryl, and hydroxyl side groups: Homopolymerization, characterization, dielectric, and thermal degradation behaviors. Journal of Applied Polymer Science, 37, 1-14.
  • Biryan, F, Demirelli, K, 2017. Characterization, thermal behavior, and electrical measurements of poly [4‐(2‐ bromoisobutyroylmethyl)styrene]. Advances in Polymer Technology, 37, 1994-2012.
  • Biryan, F, Demirelli, K, Torgut, G, Pıhtılı, G, 2017. Synthesis, thermal degradation and dielectric properties of poly[2-hydroxy,3-(1-naphthyloxy) propylmethacrylate]. Polymer Bulletin, 74, 583-602.
  • Biryan, F, Demirelli, K, 2018. Temperature-frequency dependence on electrical properties of EuCI3 based composites, thermal behaviors and preparation of poly(3-acetamidopropyl acrylate). Ferroelectrics, 526, 76-94.
  • Coşkun, D, Coşkun, MF, 2017. Kalkon İçerikli Çapraz Bağlı Polimer Sentezi ve Asidik Hidrolizi. AKÜ FEMÜBİD, 17(1), 66-72.
  • Coşkun, M, Temüz, MM, Koca, M, 2003. Thermal degadation behaviour of poly[(2-hydroxy-3- phenoxy)propyl methacrylate] and poly[2-hydroxy-3- tetrahydrofurfuryloxy)propyl methacrylate]. Polymer Degadation and Stability, 81, 95-102.
  • Crystal, EP, Frank, DB, 2000. Thermal Characterization of PMMA Thin Films Using Modulated Differential Scanning Calorimetry. Macromolecules, 33, 7016- 7020.
  • Çelik, T, Coşkun, MF, 2018. Dielectric and thermal properties of the methacrylate polymer bearingchalcone side group. Journal of Molecular Structure, 1157, 239-246.
  • Funiss, BS, Hannford, AJ, Smith, PWG, Tatchell, AR, 2004. Vogel’s Textbook of Practical Organic Chemistry. 5th ed., Longman, London, 1032–1035.
  • González-Guisasola, C, Ribes-Greus, A, 2018. Dielectric relaxations and conductivity of cross-linked PVA/SSA/GO composite membranes for fuel cells. Polymer Testing, 67, 55-67.
  • Koran, K, Tekin, Ç, Biryan, F, Tekin, S, Sandal, S, Görgülü, AO, 2017. Synthesis, structural and thermal characterizations, dielectric properties and in vitro cytotoxic activities of new 2,2,4,4-tetra(4′-oxysubstituted-chalcone)-6,6-diphenylcyclo triphosphazene derivatives. Medicinal Chemistry Research, 26, 962-974.
  • Maitz, MF, 2015. Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, 1, 161- 176.
  • Modzelewska, A, Pettit, C, Achanta, G, Davidson, NE, Huang, P, Khan, SR, 2006. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorganic and Medicinal Chemistry, 14, 3491-3495.
  • Neamen, DA, 1997. Semiconductor physics and devices 2nd ed, Mc Graw-Hill, New York, 420-450, 517-523.
  • Podkoscıelna, B, Gawdzık, B, Bartnıckı, A, 2006. Use of a New Methacrylic Monomer, 4,40-Di(2-hydroxy-3- methacryloyloxypropoxy) benzophenone, in the Synthesis of Porous Microspheres. Journal of Polymer Science: Part A: Polymer Chemistry, 44, 7014-7026.
  • Patel, PK, Rani J, Adhlakha N, Singh H, Yadav KL, 2013. Enhanced dielectric properties of doped barium titanate ceramics. Journal of Physics and Chemistry of Solids. 74, 545-549.
  • Perez, M, Ronda, JC, Reina, JA, Serra, A, 2000. Synthesis of functional polymers by modification of PECH and PECH-PEO with substituted phenolates. Polymer, 42, 1-8.
  • Popescu, D, Hoogenboom, R, Keul, H, Moeller, M, 2010. Hydroxy functional acrylate and methacrylate monomers prepared via lipase-catalyzed transacylation reactions. Journal of Molecular Catalysis B: Enzymatic, 62, 81-90.
  • Ramesh, S, Yahana, AH, Aroof, AK, 2002. Dielectric behaviour of PVC-based polymer electrolytes SolidState. Ionics, 152-153, 291-294.
  • Ramya, CS, Savitha, T, Selvasekharapandian, S, Kumar G. H., 2005. Transport Mechanism of Cu-ion Conducting PVA Based Solid-Polymer Electrolyte. Ionics. 11, 436- 441.
  • Sergejus, B, Maksim I, Jūras B, Satoshi, W, 2017. Dielectric Properties of BaTiO3-KNbO3 Composites. Ferroelectrics, 512, 8-13.
  • Symth, CP, 1955. Dielectric behaviour and structure. McGraw-Hill, New York, 52-61, 202-215.
  • Tareev, B, 1975. Physics of dielectric materials, Mir Publishers, Moscow.
  • Yuxing, R, Davud, CL, 2008. Properties and Microstructures of LowTemperature Processable Ultralow-Dielectric Porous Polyimide Films. Journal of Electronic Materials, 37, 21-28.
  • Zoglio, MA, Windheuser, JJ, Vatti, R. Maulding, HV, Kornblum, Jr SS, Jacobs, AL, et al., 1968. Linear Nonisothermal Stability Studies. Journal of Pharmaceutical Sciences, 57, 2080-2085.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ