H2SO4 ile Aktive Edilen Fıstık Kabuğu Kullanılarak Sürekli Sistem Kolonda Sucul Çözeltiden Asidik Boya Giderimi

Bu çalışmanın amacı asidik bir boya olan Asit Viyolet 17 boyasının adsorpsiyon kolonunda arıtılabilirliğiniaraştırmaktır. Tarımsal bir atık materyal olan Antep fıstığı kabukları asitle aktive edildikten sonra kolondolgu materyali olarak kullanılmıştır. Aktive edilen fıstık kabuklarının fizikokimyasal özellikleri FTIR veBET analizleri ile karakterize edilmiştir. Hazırlanan adsorbanın adsorpsiyon kapasitesinin, BET yüzeyalanıyla pozitif ilişkili olduğu görülmüştür. Sürekli sistem adsorpsiyon deneyleri, asitle aktive edilmişfıstık kabuğu ile doldurulan bir sabit kolonda gerçekleştirilmiştir. Seçilen çalışma parametrelerinin herbiri için, çıkış suyu konsantrasyonunun giriş konsantrasyonuna oranına (Ct/Ci) karşılık belirli sürelerdeokunan değerler grafiğe geçirilerek kırılma eğrileri çizilmiştir. Kırılma eğrisi verilerine göre seçilen en iyikoşullarda (2 cm yatak yüksekliği, 6 mL/dk akış hızı ve 40 mg/L başlangıç konsantrasyonu) elde edilenadsorpsiyon kapasitesi (qm) 13,66 mg/g’dır. Son olarak 0,2 M NaOH çözeltisi ile adsorban yatağınınrejenerasyonu incelenmiştir. Çalışma sonuçları kullanılan adsorbanın rejenerasyon sonrası adsorplamakapasitesinin, düşük olduğunu göstermiştir. Kırılma eğrisinden elde edilen veriler Adams-Bohart,Thomas ve Yoon-Nelson modellerine uyarlanmıştır. Sonuçlar Thomas modelin kırılma eğrilerinintanımlanması için daha uygun olduğunu göstermektedir.

Acidic Dye Removal from Aqueous Solution in Continuous System Column Using Pistachio Shells Activated with H2SO4

The purpose of this work is to investigate the adsorption of the Acid Violet 17 which is an acidic dye from aqueous solution in the adsorption column. Pistachio shells, an agricultural waste material, were used as column filling material after being activated with acid. The physicochemical properties of activated pistachio shells were characterized by FTIR and BET analysis. The results showed that the adsorption capacity of the prepared adsorbent was positively correlated to the BET surface area. Continuous system adsorption experiments were performed in a fixed column filled with acid-activated pistachio shells. For each of the selected study parameters, the breakthrough curves were plotted as a ratio of the output concentration to the input concentration (Ct/Ci) at certain times. The optimum adsorption capacity (qm) obtained in selecting the best conditions (2 cm bed height, 6 mL/min flow rate, and 40 mg/L initial concentration) according to the breakthrough curve data is 13.66 mg/g. Finally, regeneration of the adsorbent bed with 0.2 M NaOH solution was investigated. The results of the study showed that the adsorption capacity of the adsorbent used after regeneration was low. Data from the breakthrough curves were adapted to the Adams-Bohart, Thomas and Yoon-Nelson models. The results showed that the Thomas model is more suitable for the description of breakthrough curves.

___

  • Ansari, R., Seyghali, B., Mohammad-khah, A., & Zanjanchi, M. A. (2012). Highly Efficient Adsorption of Anionic Dyes from Aqueous Solutions Using Sawdust Modified by Cationic Surfactant of Cetyltrimethylammonium Bromide. Journal of Surfactants and Detergents, 15(5), 557–565.
  • Armagan, B., & Toprak, F. (2013). Optimum Isotherm Parameters for Reactive Azo Dye onto Pistachio Nut Shells: Comparison of Linear and Non-Linear Methods. Pol. J. Environ. Stud., 4(22), 1007–1011.
  • Ates, A., Reitzmann, Andreas, Hardacre, Christopher, & Yalcin, Huseyin. (2011). Abatement of nitrous oxide over natural and iron modified natural zeolites. Applied Catalysis A: General, 407, 67–75.
  • Attia, A. A., Girgis, B. S., & Fathy, N. A. (2008). Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies. Dyes and Pigments, 76(1), 282–289.
  • Banerjee, M., Basu, R. kumar, & Das, S. K. (2019). Adsorptive removal of Cu(II) by pistachio shell: Isotherm study, kinetic modelling and scale-up designing — continuous mode. Environmental Technology & Innovation, 15, 100419.
  • Banerjee, S., Sharma, G. C., Gautam, R. K., Chattopadhyaya, M. C., Upadhyay, S. N., & Sharma, Y. C. (2016). Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent. Journal of Molecular Liquids, 213, 162–172.
  • Çelekli, A., Yavuzatmaca, M., & Bozkurt, H. (2010). Modeling the Removal of Reactive Red 120 on Pistachio Husk. CLEAN - Soil, Air, Water, 38(2), 173– 180.
  • Evangelin, C. D., Naren, S. V., & Dharmendirakumar, M. (2012). Comparison of the Surface Features of the Three Chemically Modified Silk Cotton Hull Activated Carbons. Oriental Journal of Chemistry, 28(4), 1761–1768.
  • Franco, D. S. P., Tanabe, E. H., & Dotto, G. L. (2017). Continuous Adsorption of a Cationic Dye on Surface Modified Rice Husk: Statistical Optimization and Dynamic Models. Chemical Engineering Communications, 204(6), 625–634.
  • Garg, V. K., Gupta, R., Bala Yadav, A., & Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89(2), 121–124.
  • Gerçel, Ö., Özcan, A., Özcan, A. S., & Gerçel, H. F. (2007). Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Applied Surface Science, 253(11), 4843–4852.
  • Hamidpour, M., Hosseini, N., Mozafari, V., & Heshmati Rafsanjani, M. (2018). Removal of Cd(II) and Pb(II) from Aqueous Solutions by Pistachio Hull Waste. Revista Internacional de Contaminación Ambiental, 34(2), 307–316.
  • Hashemian, S. (2014). A Comparative Study of Cellulose Agricultural Wastes (Almond Shell, Pistachio Shell, Walnut Shell, Tea Waste and Orange Peel) for Adsorption of Violet B Dye from Aqueous Solutions. Oriental Journal of Chemistry, 30(4), 2091–2098.
  • Jain, Suyog N., & Gogate, P. R. (2017a). Adsorptive removal of acid violet 17 dye from wastewater using biosorbent obtained from NaOH and H2SO4 activation of fallen leaves of Ficus racemosa. Journal of Molecular Liquids, 243, 132–143.
  • Jain, S. N., & Gogate, P. R. (2017b). NaOH-treated dead leaves of Ficus racemosa as an efficient biosorbent for Acid Blue 25 removal. International Journal of Environmental Science and Technology, 14(3), 531– 542.
  • Kaur, S., Walia, T. P. S., & Kaur, R. (2008). Removal of health hazards causing acidic dyes from aqueous solutions by the process of adsorption. Online Journal of Health and Allied Sciences, 6(3), 1-10.
  • Li, W., Yue, Q., Tu, P., Ma, Z., Gao, B., Li, J., & Xu, X. (2011). Adsorption characteristics of dyes in columns of activated carbon prepared from paper mill sewage sludge. Chemical Engineering Journal, 178, 197– 203.
  • Moussavi, G., & Barikbin, B. (2010). Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. Chemical Engineering Journal, 162(3), 893–900.
  • Moussavi, G., & Khosravi, R. (2011). The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste. Chemical Engineering Research and Design, 89(10), 2182–2189.
  • Kannan, N., & Murugavel, S. (2008). Comparative study on the removal of acid violet by adsorption on various low cost adsorbents. Global NEST Journal, 10(3), 395–403.
  • Orhan, R. & Erdem, M. (2017). Üzüm Sapından Hazırlanan Aktif Karbon ile Sulu Çözeltilerden Ni(II)’nin Giderimi. Science and Eng. J of Fırat Univ., 29(1), 319-324.
  • Polat, İ., & Orhan, R. (2019). Sabit Yataklı Kolonda Şeftali Çekirdeği Kabuğu Kullanılarak Sulu Çözeltilerden Basic Yellow 51’in Giderimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(2), 415–422.
  • Sajjadi, S. A., Mohammadzadeh, A., Tran, H. N., Anastopoulos, I., Dotto, G. L., Lopičić, Z. R., HosseiniBandegharaei, A. (2018). Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. Journal of Environmental Management, 223, 1001–1009.
  • Saleem, M., Pirzada, T., & Qadeer, R. (2007). Sorption of acid violet 17 and direct red 80 dyes on cotton fiber from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(2–3), 246–250.
  • Salmani, M. H., Ghaneian, M. T., Ehrampoush, M. H., & Rezaeizadeh, M. H. (2019). Evaluation of adsorption efficiency of raw and modified pistachio hard skin in removal of Ni(II) from the contaminated solution. Desalination and Water Treatment, 153, 157–164.
  • Savci, S., Karaman, Z., Yalvac, M. (2019). Anionic and Cationic Textile Dyes Adsorption by Industrial Wastes: Pistachio Hull. Fresenius Environmental Bulletin, 28(10), 7340-7351.
  • Sivaraj, R., Namasivayam, C., & Kadirvelu, K. (2001). Orange peel as an adsorbent in the removal of Acid violet 17 (acid dye) from aqueous solutions. Waste Management, 21(1), 105–110.
  • Thenmozhi, R., & Santhi, T. (2015). Characterization of activated Acacia nilotica seed pods for adsorption of Nickel from aqueous solution. International Journal of Environmental Science and Technology, 12(5), 1677–1686.
  • Thinakaran, N., Baskaralingam, P., Pulikesi, M., Panneerselvam, P., & Sivanesan, S. (2008). Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. Journal of Hazardous Materials, 151(2), 316–322.
  • Turan, N. G., & Mesci, B. (2011). Use of Pistachio Shells as an Adsorbent for the Removal of Zinc(II) Ion. CLEAN - Soil, Air, Water, 39(5), 475–481.
  • Vijayalakshmi, P., Bala, V. S. S., Thiruvengadaravi, K. V., Panneerselvam, P., Palanichamy, M., & Sivanesan, S. (2011). Removal of Acid Violet 17 from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Pistachio Nut Shell. Separation Science and Technology, 46(1), 155–163.
  • Yang, T., & Lua, A. C. (2006). Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells. Materials Chemistry and Physics, 100(2–3), 438–444.
  • Yusuf, M., Khan, M. A., Otero, M., Abdullah, E. C., Hosomi, M., Terada, A., & Riya, S. (2017). Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. Journal of Colloid and Interface Science, 493, 51–61.
  • Zhang, W., Li, H., Kan, X., Dong, L., Yan, H., Jiang, Z., Cheng, R. (2012). Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresource Technology, 117, 40–47.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ