STEM Eğitimine Geçişte Bir Araç Olarak Disiplinler Arası Matematiksel Modelleme Oluşturma Etkinlikleri: Öğretmen ve Öğrenci Görüşleri

Bu çalışmada günümüz yeni eğitim yaklaşımlarından biri olan STEM (Science, Technology, Education, Mathematics) eğitimine geçişte Disiplinler Arası Model Oluşturma Etkinliklerinin (DAMOE) bir araç olarak kullanılıp kullanılamayacağı öğretmen ve öğrenci görüşleri doğrultusunda belirlenmeye çalışılmıştır. Görüşme tekniğinin kullanıldığı bu çalışma 2015- 2016 eğitimi-öğretim yılında Türkiye’nin Doğu Anadolu Bölgesindeki bir ilin merkez okulunda görev yapan 2 öğretmen (Matematik, Fen bilimleri) ile aynı okuldan seçilen yedi 7. sınıf öğrencisi ile yürütülmüştür. Çalışma kapsamında ilk önce öğretmenlerle disiplinler ve günlük yaşamla ilişkileri, disiplinler arası ilişkilendirme konuları kapsamında yarı-yapılandırılmış ön görüşmeler yapılmış, daha sonra öğretmenler rehberliğinde öğrencilere Matematik ile Fen bilimleri disiplinlerinin öğrenme alanlarını içeren üç adet Disiplinler Arası Model Oluşturma Etkinlikleri (DAMOE) uygulanmıştır. Uygulama sonrasında öğretmen ve öğrencilerle bu etkinliklerin/problemlerin müfredatta uygulanabilirliği ve bu etkinlikleri çözmenin öğrencilere ne gibi faydalar sağlayacağı konuları kapsamında yarı-yapılandırılmış son görüşmeler yapılmıştır. Elde edilen bulgularda DAMOE’lerin öğrencilerin disiplinler arası ilişkilendirme becerilerini geliştirdiği, disiplinlere olan tutumu olumlu yönde değiştirebileceği ve DAMOE’lerin okul müfredatında yer alması gerektiği görüşleri tespit edilmiştir.

Interdisciplinary Mathematical Modeling Activities as a Transitional Tool for STEM Education: Teacher and Student Opinions

In this study, it has been tried to determine in the direction of teacher andstudent opinions whether the Interdisciplinary Modeling Activities (DAMOE)can be used as a tool in transitioning to STEM (Science, Technology,Education, Mathematics) education which is one of the new educationalapproaches today. This study was conducted with 2 teachers and 7 seventhgrade students in a central school in the East Anatolia of Turkey by usinginterview technique. In the scope of the study, firstly, semi-structuredpreliminary interviews were conducted with the teachers about therelationship between disciplines and daily life and about interdisciplinaryrelationship. Secondly, the three interdisciplinary modeling activities(DAMOE) including learning areas of Mathematics and Science andTechnology disciplines were applied to the students under the guidance ofteachers. After the implementation, teachers and students were subjected tosemi-structured final interviews within the context of the applicability of theseactivities / problems in the curriculum and what benefits students will get fromsolving these activities. In the findings, it was determined that DAMOEsimproved students' interdisciplinary skills, that they could change attitudestoward disciplines positively, and that DAMOEs should be included in theschool curriculum.

___

  • Akademi, S. T. E. M. (2013). Dünyada STEM. 15. 06. 2016 tarihinde www. stemakademi. com. tr adresinden erişildi.
  • Akgün, L., Çiltaş, A., Deniz, D., Çiftçi, Z., & Işık, A. (2013). İlköğretim matematik öğretmenlerinin matematiksel modelleme ile ilgili farkındalıkları. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(6), 1-34.
  • Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M. S., Öner, T., & Özdemir, S. (2015). STEM eğitimi Türkiye raporu. İstanbul: Scala Basım.
  • Australia, E. (2009). Australian engineering competency standards-Stage 1. Competency Standards For Professional Engineers.
  • Baran, E., Canbazoğlu-Bilici, S., & Mesutoğlu, C. (2017). Fen, teknoloji, mühendislik ve matematik (FeTeMM) spotu geliştirme etkinliği. Journal of Inquiry Based Activities, 5(2), 60-69.
  • Bliss, K. M., Fowler, K. R., & Galluzo, B. J. (2014). Math modeling: Getting Started & Getting Solutions. Philadelphia, PA: SIAM.
  • Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education–Discussion document. Educational studies in mathematics, 51(1-2), 149-171.
  • Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt?. Journal of mathematical modelling and application, 1(1), 45-58.
  • Cavey, O.L. & Campion, J. (2016). Learning secondary school mathematics through authentic mathematical modeling tasks. In C. Hirsch and A.R. McDuffie, eds. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics. Reston, VA: NCTM, pp.131-141.
  • Chamberlin, S. A., & Moon, S. M. (2006). Model-eliciting Activities: An Introduction to Gifted Education. Journal of Secondary Gifted Education, 17, 37-47.
  • Chan, C. M. E., Ng, K. E. D., Widjaja, W., & Seto, C. (2015). A case study on developing a teacher's capacity in mathematical modelling. The Mathematics Educator, 16(1), 1-31.
  • Cirillo, M., Pelesko, J.A., Felton-Koestler, M. D., (2016). Perspectives on Modeling in School Mathematics. In C. Hirsch and A.R. McDuffie, eds. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics. Reston, VA: NCTM, pp.3-16.
  • Common Core State Standards Initiative. (2010). Common core state standards for mathematics (CCSSM). Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.
  • Çiltaş, A., & Işık, A. (2013). Matematiksel modelleme yoluyla öğretimin ilköğretim matematik öğretmeni adaylarının modelleme becerileri üzerine etkisi. Kuram ve Uygulamada Eğitim Bilimleri, 13(2), 1177-1194.
  • Delice, A., Sevimli, E., & Aydin, E. (2009). Reflections in Peer Evaluation: Is the Attended Teacher Training Program the Implemented Training program?. Research in Mathematical Education, 13(2), 141-150.
  • Deniz, D. (2014). Ortaöğretim matematik öğretmenlerinin matematiksel modelleme yöntemine uygun etkinlik oluşturabilme ve uygulayabilme yeterlikleri. Retrieved from Atatürk Üniversitesi-Dijital Arşiv Açık Erişim Sistemi, (123456789/1223).
  • Doğan, M. F., Gürbüz, R., Çavuş Erdem, Z. ve Şahin, S., (2018). STEM eğitimine geçişte bir araç olarak matematiksel modelleme. R. Gürbüz ve M. F. Doğan (Ed.), Matematiksel modellemeye disiplinler arası bakış: Bir STEM yaklaşımı. (ss. 43-56). Ankara: Pegem Akademi.
  • Dorn, R. I., Douglass, J., Ekiss, G. O., Trapido-Lurie, B., Comeaux, M., Mings, R., & Ramakrishna, B. (2005). Learning geography promotes learning math: Results and implications of Arizona's GeoMath grade K-8 program. Journal of Geography, 104(4), 151-159.
  • Edwards D, Hamson M (2007). Guide to mathematical modelling. Industrial. Press, South Norwalk. English, L. D. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM, 41(1-2), 161-181.
  • English, L. D. (2015). STEM: Challenges and opportunities for mathematics education. In Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 4-18). PME.
  • English, L., & Sriraman, B. (2010). Problem solving for the 21 st century. In Theories of mathematics education (pp. 263-290). Springer, Berlin, Heidelberg.
  • Freudenthal, H. (1968). Why to teach mathematics so as to be useful. Educational studies in mathematics, 1(1-2), 3-8.
  • Gainsburg, J. (2013). Learning to model in engineering. Mathematical Thinking and Learning, 15(4), 259-290.
  • Güder, Y. (2013). Ortaokul matematik öğretmenlerinin matematiksel modellemeye ilişkin görüşleri. Yayınlanmamış Yüksek Lisans Tezi. Fırat Üniversitesi Eğitim Bilimleri Enstitüsü, Elazığ.
  • Gürbüz, R. (2008). Matematik öğretiminde çoklu zekâ kuramına göre tasarlanan öğrenme ortamlarından yansımalar. Yayımlanmamış Doktora Tezi. Trabzon: Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü.
  • Kaiser, G. (2016). The Teaching and Learning of Mathematical Modeling. In Handbook for Research in Mathematics Education, edited by Jinfa Cai. Reston, Va.: National Council of Teachers of Mathematics.
  • Karakuş, M., Türkkan, B. T., & Karakuş, F. (2017). Fen Bilgisi ve İlköğretim Matematik Öğretmenlerinin Disiplinlerarası Yaklaşıma Yönelik Görüşlerinin Belirlenmesi. İlköğretim Online, 16(2).
  • Karasar, N. (2004). Bilimsel araştırma yöntemi. Ankara. Nobel Yayın Dağıtım
  • Keşan, C., & Kaya, D. (2008). Fen öğretiminde hibritleşmiş bir öğrenme ortamı nasıl olmalı. Bilim, Eğitim ve Düşünce Dergisi, 8(4).
  • Kurup, A., Chandra, A., & Binoy, V. V. (2015). Little minds dreaming big science’: Are we really promoting ‘children gifted in STEM’in India. Current Science, 108(5), 779-781.
  • Lehrer, R., & Schauble, L. (2007). Contrasting emerging conceptions of distribution in contexts of error and natural variation. Thinking with data, 149-176.
  • Lesh, R., & Caylor, B. (2007). Introduction To Special Issue: Modeling as application versus modeling as a way to create mathematics. International. Journal of Computers for Mathematical Learning. 12 (3), 173-194.
  • Lesh, R., & Yoon, C. (2007). What is distinctive in (our views about) models & modelling perspectives on mathematics problem solving, learning, and teaching?. In Modelling and applications in mathematics education (pp. 161- 170). Springer, Boston, MA.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly, & R. Lesh. (Eds.), Handbook of Research Design in Mathematics and Science Education (pp. 591-645). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Maaß, K. (2005). Barriers and opportunities for the integration of modelling in mathematics classes: results of an empirical study. Teaching Mathematics and Its Applications: International Journal of the IMA, 24(2-3), 61-74.
  • Maiorca, C., & Stohlmann, M. S. (2016). Inspiring students in integrated STEM education through modeling activities. In C. Hirsch and A.R. McDuffie, eds. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics. Reston, VA: NCTM, pp.153-161.
  • Matthews, K. E., Adams, P., & Goos, M. (2009). Putting it into perspective: mathematics in the undergraduate science curriculum. International Journal of Mathematical Education in Science and Technology, 40(7), 891-902.
  • MEB (2017). Fen bilimleri dersi taslak öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar): Anakara.
  • MEB (2018). Matematik dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar): Anakara.
  • National Academy of Sciences (NAS). STEM Integration in K–12 Education: Status, Prospects, and an Agenda for Research. Washington D.C.: National Academies Press, 2014.
  • NGA & CCSSO (2010). National governors association center for best practices and council of chief state school officers (NGA Center and CCSSO). Common Core State Standards for Mathematics. Washington,D.C.
  • Osman, K., & Saat, R. M. (2014). Science technology, engineering and mathematics (STEM) education in Malaysia. Eurasia Journal of Mathematics, Science and Technology Education, 10(3), 153-154.
  • Özer Keskin, Ö. (2008). Ortaöğretim matematik öğretmen adaylarının matematiksel modelleme yapabilme becerilerinin geliştirilmesi üzerine bir araştırma. Yayınlanmamış doktora tezi. Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Özgen, K. (2013). Problem çözme bağlaminda matematiksel ilişkilendirme becerisi: öğretmen adaylari örneği. Education Sciences, 8(3), 323-345.
  • Parr, B., Edwards, M. C., & Leising, J. G. (2009). Selected effects of a curriculum ıntegration intervention on the mathematics performance of secondary students enrolled in an agricultural power and technology course: An experimental study. Journal of Agricultural Education, 50(1), 57-69.
  • Pollak, H. (2012). What is mathematical modeling? In Mathematical Modeling Handbook, edited by Heather Gould, Diane R. Murray, and Andrew Sanfratello, pp. viii–xi. Bedford, Mass.: Consortium for Mathematics and Its Applications (COMAP).
  • Remijan, K. W. (2017). Project-based learning and design-focused projects to motivate secondary mathematics students. Interdisciplinary Journal of Problem-Based Learning, 11(1), 1.
  • Sabelli, N. H. (2006). Complexity, technology, science, and education. The Journal of the learning sciences, 15(1), 5-9.
  • Sahin, A., Ayar, M. C., & Adiguzel, T. (2014). STEM related after-school program activities and associated outcomes on student learning. Educational Sciences: Theory and Practice, 14(1), 309-322.
  • Schaap, S., Vos, P., & Goedhart, M. (2011). Students overcoming blockages while building a mathematical model: Exploring a framework. In Trends in teaching and learning of mathematical modelling (pp. 137-146). Springer, Dordrecht.
  • Shahali, M., Hafizan, E., Halim, L., Rasul, S., Osman, K., Ikhsan, Z., & Rahim, F. (2015). Bitara-stem training of trainers'programme: impact on trainers'knowledge, beliefs, attitudes and efficacy towards integrated stem teachıng. Journal of Baltic Science Education, 14(1).
  • Shahbari, J. A., & Peled, I. (2017). Modelling in primary school: constructing conceptual models and making sense of fractions. International Journal of Science and Mathematics Education, 15(2), 371-391.
  • Shaughnessy, J. M. (2013). Mathematics in a STEM context. Mathematics Teaching in the Middle school, 18(6), 324-324.
  • Shulman, V., & Armitage, D. (2005). Project discovery: An urban middle school reform effort. Education and Urban Society, 37(4), 371-397.
  • Steen, L. A., Turner, R., & Burkhardt, H. (2007). Developing mathematical literacy. In Modelling and applications in mathematics education (pp. 285-294). Springer, Boston, MA.
  • Stinson, K., Harkness, S. S., Meyer, H., & Stallworth, J. (2009). Mathematics and science integration: Models and characterizations. School Science and Mathematics, 109(3), 153-161.
  • Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 4.
  • Şimşek, H., & Yıldırım, A. (2011). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Toluk Uçar, Z. (2011). Öğretmen adaylarının pedagojik içerik bilgisi: Öğretimsel açıklamalar. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 2(2).
  • Tytler, R., Osborne, J., Williams, G., Tytler, K., & Cripps Clark, J. (2008). Opening up pathways: Engagement in STEM across the primary-secondary school transition. Edited by Tytler, Russell, Osborne, Jonathan, Williams, Gaye, Tytler, Kristin and Cripps Clark, John, Australian Department of Education, Employment and Workplace Relations, Canberra, A.C.T..
  • Wang, H.H. (2012). A new era of science education: science teachers‘ perceptions and classroom practices of science, technology, engineering and mathematics (STEM) integration.. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/120980.
  • Watters, J. J., English, L. D., & Mahoney, S. (2004). Mathematical modeling in the elementary school. American Educational Research Association Annual meeting. San Diego.
  • Yenilik, M. E. B., & Müdürlüğü, E. T. G. (2016). STEM eğitimi raporu. Ankara: MEB.
  • Yu, S. Y., & Chang, C. K. (2011). What did taiwan mathematics teachers think of model-eliciting activities and modelling teaching?. In G. Kaiser, W. Blum, R. B. Ferri and G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA 14 (pp. 147-156). Netherlands: Springer.
  • Zieffler, A. S., & Garfield, J. B. (2009). Modelıng the growth of students'covarıatıonal reasonıng durıng an ıntroductory statıstıcs course. Statistics Education Research Journal, 8(1).
  • Zawojewski, J. S. (2016). Teaching and learning about mathematical modeling. In C. Hirsch and A.R. McDuffie, eds. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics. Reston, VA: NCTM, pp.51-52.