Doğrusal Fonksiyonun Öğrenilmesine Yönelik Tasarlanan Matematiksel Modelleme Etkinliği Üzerine Çalışan Öğrencilerin Nicel Muhakemeleri

Öğrencilerin nicel muhakeme yoluyla doğrusal fonksiyondaki temel nicelikleri düşünmeleri, yeni nicelikler oluşturmaları ve farklı gösterimler arasında ilişkilendirmeler yapmaları fonksiyonların kavramsal öğrenme süreci için önemlidir. Bu çalışmada doğrusal fonksiyonun öğrenilmesine yönelik tasarlanan bir modelleme etkinliği üzerinde çalışan öğrencilerin nicel muhakemelerini incelemek amaçlanmıştır. Öğretim deneyine dayalı gerçekleştirilen çalışmanın katılımcılarını bir fen lisesinde öğrenim gören on tane 10.sınıf öğrencisi oluşturmaktadır. Öğrenciler verilen etkinlik üzerinde kendi belirledikleri ikişer kişilik gruplar halinde çalışmışlardır. Grupların çözüm kâğıtları ve etkinlik çalışmaları boyunca alınan video kamera kayıtlarının transkriptleri araştırmanın veri kaynaklarını oluşturmuştur. Toplanan veriler öğrencilerin nicel muhakemeleri doğrultusunda devam eden analizler ve geriye dönük analizler olarak iki aşamada analiz edilmiştir. Analizler, öğrencilerin deneyimledikleri ya da anlam yükleyebildikleri bir durum üzerinde çalışırlarken zihinsel olarak daha aktif eylemler sergilediklerini göstermiştir. Etkinliğin yansıtıcı soyutlamayı destekleyecek nicel muhakemeleri göz önüne alarak tasarlanmasının öğrencilerin nicelikleri oluşturmalarını desteklemede önemli bir etken olduğu söylenebilir. Bu bağlamda modelleme etkinliklerinden kavram öğretimi süreçlerinde yararlanılması önerilmektedir.

Students’ Quantitative Reasoning while Engaging in a Mathematical Modeling Task Designed for Learning Linear Function

It is important for students to think the quantities related to the linearfunctions, to construct new quantities and to relate the differentrepresentations of linear functions through quantitative reasoning. Thepurpose of this study is to examine the students’ quantitative reasoningwhile engaging in the mathematical modeling task, which was designed, forlearning the linear function. The participants of the study conducted with ateaching experiment were consisted of ten 10th grade students with threegirls and seven boys. The students engaged in the written task in pairs. Thedata were gathered from each group’s written solutions and thetranscriptions of the camera recordings of the process of enagaging in thetask. The data were analysed by ongoing and retrospective analyses in thedirection of the students' quantitative reasoning. Based on the data analysis,it was seen that students were cognitively more active while they wereworking on a situation which they had experienced or which was meaningfulfor them. It could be said that designing the task by considering thequantitative reasoning to trigger reflective abstraction was important factorfor students to be supported for constructing the quantities. In this context, itis suggested to benefit from mathematical modeling tasks while teaching theconcepts.

___

  • Acevedo Nistal A., Van Dooren W. & Verschaffel L. (2014). Improving students’ representational flexibility in linear-function problems: An intervention. Educational Psychology, 34(6) , 763-786.
  • Alacacı, C. (2016). Gerçekçi matematik eğitimi. E. Bingölbali, S. Arslan, & İ. Ö. Zembat, (Ed.), Matematik Eğitiminde Teoriler (pp. 341-354). Ankara: Pegem Akademi Kitabevi Yayınları.
  • Battista, M. T., & Clements, D. H. (2000). Mathematics curriculum development as a scientific endeavor. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 737-760). Mahwah: Erlbaum.
  • Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378.
  • Cobb, P. (2000). Conducting teaching experiments in collaboration with teachers. In A.E. Kristin & R.A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 307-333). Mahwah, NJ: Erlbaum.
  • Cobb, P., & Steffe, L. P. (1983). The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education, 4(2), 83-94.
  • Common Core State Standards Initiative [CCSSI]. (2010). The common core state standards for mathematics. Washington, DC: National Governors Association Center for Best Practices and Council of Chief State School Officers. Retrieved April 4, 2016 from http://www.corestandards. org/thestandards/mathematics.
  • Confrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential function. Journal for Research in Mathematics Education, 26, 66–86.
  • Doğan, A. , & Çetin, İ. (2009). Doğru ve ters orantı konusundaki 7. ve 9. Sınıf öğrencilerinin kavram yanılgıları. Uşak Üniversitesi Sosyal Bilimler Dergisi 2(2), 118-128.
  • Ellis, A. B. (2011). Algebra in the middle school: Developing functional relationships through quantitative reasoning. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 215-235). New York: Springer.
  • García, F. J., Maass, K., & Wake, G. (2010). Theory meets practice: Working pragmatically within different cultures and traditions. In Modeling Students' Mathematical Modeling Competencies (pp. 445-457). Boston, MA: Springer.
  • Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155-177.
  • Gravemeijer, K. & Doorman, M. (1999). Context problems in realistic mathematics education: a calculus course as an example. Educational Studies in Mathematics, 39(1-3), 111-129.
  • Hohensee, C. (2016). Student noticing in classroom settings: A process underlying influences on prior ways of reasoning. The Journal of Mathematical Behavior, 42(2), 69-91.
  • Johnson, H. L. (2013). Reasoning about quantities that change together. Mathematics Teacher, 106(9), 704-708.
  • Johnson, H. L. (2015). Secondary students’ quantification of ratio and rate: A framework for reasoning about change in covarying quantities. Mathematical Thinking and Learning, 17(1), 64-90.
  • Kaiser, G., & Sriraman, B. (2006). A global survey of ınternational perspectives on modelling in mathematics education. Zentralblatt für Didaktik der Mathematik, 38(3), 302-310.
  • Karagöz Akar, G. (2013). Oran-orantı kavram tanımları, rasyonel sayılar içerisindeki yeri ve doğrusallık kavramı ile ilişkisi, I. O. Zembat, M. F. Özmantar, E. Bingölbali, H. Şandır, & A. Delice (Eds), Tanımları ve tarihsel gelişimleriyle matematiksel kavramlar, (pp.111-126). Ankara: Pegem Yayıncılık.
  • Kertil, M., Çetinkaya, B., Erbaş, A. K., & Çakıroğlu, E. (2016). Matematik eğitiminde matematiksel modelleme. In E. Bingölbali, S. Arslan, & İ. Ö. Zembat (Eds.), Matematik eğitiminde teoriler (pp. 539–563). Ankara: Pegem Akademi.
  • Konold, C., & Johnson, D. K. (1991) Philosophical and psychological aspects of constructivism. In Steffe L. P. (Ed.) Epistemological foundations of mathematical experience (s. 1-13). Springer, New York.
  • Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.
  • Lesh, R. & Zawojewski, J. S. (2007). Problem solving and modeling. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 763-804). Charlotte, NC: Information Age Publishing.
  • Lesh, R. A., & Doerr, H. (2003). Foundations of model and modelling perspectives on mathematic teaching and learning. In R. A. Lesh & H. Doerr (Eds.), Beyond constructivism: A models and modelling perspectives on mathematics teaching, learning and problem solving (pp. 3-33). Mahwah, NJ: Lawrance Erlbauum.
  • Lesh, R. A., & Harel, G. (2003). Problem solving, modeling, and local conceptual developing, Mathematical Thinking and Learning. 5(2&3),157-189.
  • Lesh, R., & Yoon, C. (2004). Evolving communities of mind-in which development involves several interacting and simultaneously development strands. Mathematical Thinking and Learning. 6(2), 205-226.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought revealing activities for students and teachers. In A. Kelly, & R. Lesh. (Eds.), Handbook of Research Design in Mathematics and Science Education (pp. 591-645). Mahwah, NJ:Lawrence Erlbaum Associates.
  • Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. The Journal of Mathematical Behavior, 21(1), 87-116.
  • Metcalf, R. C. (2007). The nature of students’ understanding of quadratic functions, Yayınlanmamış doktora tezi, The State University of New York at Buffalo, ABD.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Ortaöğretim matematik dersi (9, 10, 11 ve 12. sınıflar) öğretim programı. Ankara: Milli Eğitim Bakanlığı.
  • Moore, K. C. (2014). Quantitative reasoning and the sine function: The case of Zac. Journal for Research in Mathematics Education, 45(1), 102-138.
  • Moore, K. C., Carlson, M. P., & Oehrtman, M. (2009). The role of quantitative reasoning in solving applied precalculus problems. Proceedings of the Twelfth Annual Conference on Research in Undergraduate Mathematics Education. Raleigh, NC: North Carolina State University.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Practice-based professional development for teachers of mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • Nielsen, L. E. J. (2015). Understanding quadratic functions and solving quadratic equations: An analysis of student thinking and reasoning. Yayınlanmamış doktora tezi, Washington Üniversitesi, Missouri, ABD.
  • Oehrtman, M. C., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities that promote coherence in students' understandings of function. M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and practice in undergraduate mathematics (pp. 150-171). Washington, DC: Mathematical Association of America.
  • Simon, M. A. (in press). An emerging methodology for studying mathematics concept learning and instructional design. Journal of Mathematical Behavior. x(x), xxxx.
  • Simon, M. A. (2000). Constructivism, mathematics teacher education, and research in mathematics teacher development. In L.P. Steffe, & P.W. Thompson ( Eds.). Radical constructivism in action: Building on the pioneering work of Ernst von. Glasersfeld (pp. 213-230). London: Routledge-Falmer.
  • Simon, M., Tzur, R., Heinz, K. & Kinzel, M., (2004). Explicating a mechanism for conceptual learning: Elaborating the construct of reflective abstraction. Journal for Research in Mathematics Education, 35(5), 305-329.
  • Smith, J., & Thompson, P. W. (2008). Quantitative reasoning and the development of algebraic reasoning. J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 95-132). New York: Erlbaum.
  • Steffe, L. P. (2002). A new hypothesis concerning children’s fractional knowledge. Journal of Mathematical Behavior, 102, 1-41.
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. R. Lesh, & A. E. Kelly (Ed.), Research design in mathematics and science education (pp. 267-307). Hillsdale, NJ: Erlbaum.
  • Steffe, L.P. (1991). Epistemological foundations of mathematical experience, New York: Springer.
  • Şahin, N., & Eraslan, A. (2016). İlkokul öğrencilerinin modelleme süreçleri: Suç problemi. Eğitim ve Bilim, 41(183), 47-67.
  • Tanışlı, D. (2011). Functional thinking ways in relation to linear function tables of elementary school students. The Journal of Mathematical Behavior, 30(3), 206-223.
  • Tekin Dede, A., & Bukova Güzel, E. (2014). Model oluşturma etkinlikleri: Kuramsal yapısı ve bir örneği. Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 33(1), 95-112.
  • Thompson, P. W. (1990). A theoretical model of quantity-based reasoning in arithmetic and algebraic. Progress report to the National Science Foundation. San Diego State University, Center for Research in Mathematics and Science Education.
  • Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. In E. Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), Research in collegiate mathematics education (Vol. 4, pp. 21–44). Providence, RI: American Mathematical Society.
  • Thompson, P. W. (1995). Notation, convention, and quantity in elementary mathematics. J. Sowder & B. Schapelle (Ed.), Providing a foundation for teaching middle school mathematics (pp. 199-221). Albany, NY: SUNY Press.
  • Thompson, P. W. (2013). Why use f (x) when all we really mean is y. OnCore, The Online Journal of the AAMT, 18-26.
  • Thompson, P. W. & Carlson, M. P. (2017). Variation, covariation, and functions: foundational ways of thinking mathematically. J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). Reston, VA: National Council of Teachers of Mathematics.
  • Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational studies in Mathematics, 54(1), 9-35.
  • Wang, Y., Barmby, P., & Bolden, D. (2017). Understanding linear function: a comparison of selected textbooks from England and Shanghai. International Journal of Science and Mathematics Education, 15(1), 131-153.
  • Weber, E., Ellis, A., Kulow, T., & Ozgur, Z. (2014). Six principles for quantitative reasoning and modeling. Mathematics Teacher, 108(1), 24-30.
  • Wilkie, K. J. (2016). Students’ use of variables and multiple representations in generalizing functional relationships prior to secondary school. Educational Studies in Mathematics, 93(3), 333-361.