Günümüzde, kompozit rezinler, estetik özellikleri nedeniyle yaygın olarak kullanılan restoratif materyallerdir. Bununla birlikte; polimerizasyon büzülmesi, kenar sızıntısı, renklenme ve sekonder çürük, kompozit rezinlerin en önemli başarısızlık sebepleri arasında yer almaktadır. Bu olumsuzlukların üstesinden gelmek için, remineralizasyon potansiyeline sahip, antimikrobiyal maddeler içeren yeni bioaktif materyallerin geliştirilmesiyle ilgili pek çok çalışma yapılmaktadır. Bu araştırmalar, demineralizasyonun azaltılması, sekonder çürüklerin engellenmesi, asitlerin nötralize edilmesi, biyofilm oluşumu ve asit üretiminin baskılanması, tersiyer dentin oluşumunun sağlanması ve pulpanın korunması konusunda umut verici sonuçlara sahiptir.
Nowadays, resin composites are widely used restorative materials due to their esthetic properties. However, polymerization shrinkage, microleakage, discoloration and secondary caries are the most important caueses of failure of resin composites. Many studies are being conducted on the development of new bioactive materials with remineralization potential and containing antimicrobial agents to overcome these disadvantages. These studies have promising results for degreasing demineralization, inhibiting secondary caries, neutralizing acid production, ensuring tertiary dentin formation and protecting the pulp. ">
[PDF] Biyoaktif kompozit rezinler | [PDF] Bioactive resin composites
Günümüzde, kompozit rezinler, estetik özellikleri nedeniyle yaygın olarak kullanılan restoratif materyallerdir. Bununla birlikte; polimerizasyon büzülmesi, kenar sızıntısı, renklenme ve sekonder çürük, kompozit rezinlerin en önemli başarısızlık sebepleri arasında yer almaktadır. Bu olumsuzlukların üstesinden gelmek için, remineralizasyon potansiyeline sahip, antimikrobiyal maddeler içeren yeni bioaktif materyallerin geliştirilmesiyle ilgili pek çok çalışma yapılmaktadır. Bu araştırmalar, demineralizasyonun azaltılması, sekonder çürüklerin engellenmesi, asitlerin nötralize edilmesi, biyofilm oluşumu ve asit üretiminin baskılanması, tersiyer dentin oluşumunun sağlanması ve pulpanın korunması konusunda umut verici sonuçlara sahiptir. ">
Günümüzde, kompozit rezinler, estetik özellikleri nedeniyle yaygın olarak kullanılan restoratif materyallerdir. Bununla birlikte; polimerizasyon büzülmesi, kenar sızıntısı, renklenme ve sekonder çürük, kompozit rezinlerin en önemli başarısızlık sebepleri arasında yer almaktadır. Bu olumsuzlukların üstesinden gelmek için, remineralizasyon potansiyeline sahip, antimikrobiyal maddeler içeren yeni bioaktif materyallerin geliştirilmesiyle ilgili pek çok çalışma yapılmaktadır. Bu araştırmalar, demineralizasyonun azaltılması, sekonder çürüklerin engellenmesi, asitlerin nötralize edilmesi, biyofilm oluşumu ve asit üretiminin baskılanması, tersiyer dentin oluşumunun sağlanması ve pulpanın korunması konusunda umut verici sonuçlara sahiptir.
Nowadays, resin composites are widely used restorative materials due to their esthetic properties. However, polymerization shrinkage, microleakage, discoloration and secondary caries are the most important caueses of failure of resin composites. Many studies are being conducted on the development of new bioactive materials with remineralization potential and containing antimicrobial agents to overcome these disadvantages. These studies have promising results for degreasing demineralization, inhibiting secondary caries, neutralizing acid production, ensuring tertiary dentin formation and protecting the pulp. ">
Günümüzde, kompozit rezinler, estetik özellikleri nedeniyle yaygın olarak kullanılan restoratif materyallerdir. Bununla birlikte; polimerizasyon büzülmesi, kenar sızıntısı, renklenme ve sekonder çürük, kompozit rezinlerin en önemli başarısızlık sebepleri arasında yer almaktadır. Bu olumsuzlukların üstesinden gelmek için, remineralizasyon potansiyeline sahip, antimikrobiyal maddeler içeren yeni bioaktif materyallerin geliştirilmesiyle ilgili pek çok çalışma yapılmaktadır. Bu araştırmalar, demineralizasyonun azaltılması, sekonder çürüklerin engellenmesi, asitlerin nötralize edilmesi, biyofilm oluşumu ve asit üretiminin baskılanması, tersiyer dentin oluşumunun sağlanması ve pulpanın korunması konusunda umut verici sonuçlara sahiptir.
Bioactive resin composites
Nowadays, resin composites are widely used restorative materials due to their esthetic properties. However, polymerization shrinkage, microleakage, discoloration and secondary caries are the most important caueses of failure of resin composites. Many studies are being conducted on the development of new bioactive materials with remineralization potential and containing antimicrobial agents to overcome these disadvantages. These studies have promising results for degreasing demineralization, inhibiting secondary caries, neutralizing acid production, ensuring tertiary dentin formation and protecting the pulp.
1. Dayangaç B., Kompozit rezin restorasyonlar. Güneş Kitabevi, Ankara, 2000.
2. Hickel R., Dasch W., Janda R., Tyas M., Anusavice K., New direct restorative materials. Nederlands tijdschrift voor tandheelkunde, 1999. 106(4): p. 128-140.
3. Deligeorgi V., Mjör I.A., Wilson N.H., An overview of reasons for the placement and replacement of restorations. Primary Dental Care, 2001(1): p. 5-11.
4. Sarrett D.C., Clinical challenges and the relevance of materials testing for posterior composite restorations. Dental materials, 2005. 21(1): p. 9-20.
5. Pereira‐Cenci T., Cenci M.S., Fedorowicz Z., Azevedo M., Antibacterial agents in composite restorations for the prevention of dental caries. Cochrane Database of Systematic Reviews, 2013(12).
6. Fedorowicz Z., Marchesan M.A., Cenci M.S., Cenci T.P., Antibacterialagentsin composite restorationsfor the prevention of dentalcaries. 2009.
7. Hamouda I.M., Current perspectives of nanoparticles in medical and dental biomaterials. Journal of biomedical research, 2012. 26(3): p. 143-151.
8. Wiegand A., Buchalla W., Attin T., Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dental materials, 2007. 23(3): p. 343-362.
9. Xie D., Weng Y., Guo X., Zhao J., Gregory R.L. et al., Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dental Materials, 2011. 27(5): p. 487-496.
10. Bourbia M., Ma D., Cvitkovitch D.G., Santerre J.P., Finer Y., Cariogenic bacteria degrade dental resin composites and adhesives. Journal of dental research, 2013. 92(11): p. 989-994.
11. Svanberg M., Mjör I., Orstavik D., Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations. Journal of dental research, 1990. 69(3): p. 861-864.
12. Beyth N., Bahir R., Matalon S., Domb A.J., Weiss E.I., Streptococcus mutans biofilm changes surface-topography of resin composites. dental materials, 2008. 24(6): p. 732-736.
13. Khalichi P., Singh J., Cvitkovitch D.G., Santerre J.P., The influence of triethylene glycol derived from dental composite resins on the regulation of Streptococcus mutans gene expression. Biomaterials, 2009. 30(4): p. 452- 459.
14. Breschi L., Mazzoni A., Ruggeri A., Cadenaro M., Lenarda R. et al., Dental adhesion review: aging and stability of the bonded interface. dental materials, 2008. 24(1): p. 90-101.
15. Imazato S., Kuramoto A., Takahashi Y., Ebisu S., Peters M.C., In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dental Materials, 2006. 22(6): p. 527-532.
16. Esteves C., Ota-Tsuzuki C., Reis A.F., Rodrigues J.A., Antibacterial activity of various self-etching adhesive systems against oral streptococci. Operative dentistry, 2010. 35(4): p. 448-453.
17. Zhang K., Zhang N., Weir M.D., Reynolds M.A., Bai Y. et al., Bioactive dental composites and bonding agents having remineralizing and antibacterial characteristics. Dental Clinics, 2017. 61(4): p. 669-687.
18. Melo M.A.S., Cheng L., Zhang K., Weir M.D., Zhou X. et al., Novel nanostructured bioactive restorative materials for dental applications. Biological and Pharmaceutical Applications of Nanomaterials, 2015. 151.
19. Chatzistavrou X., Lefkelidou A., Papadopoulou L., Pavlidou E., Paraskevopoulos K.M. et al., Bactericidal and bioactive dental composites. Frontiers in physiology, 2018. 9: p. 103.
20. Huyang G., Debertin A.E., Sun J., Design and development of self-healing dental composites. Materials & design, 2016. 94: p. 295-302.
21. Jandt K.D., Sigusch B.W., Future perspectives of resin-based dental materials. Dental materials, 2009. 25(8): p. 1001-1006.
22. Trask R., Williams H., Bond I., Self-healing polymer composites: mimicking nature to enhance performance. Bioinspiration & Biomimetics, 2007. 2(1): p. P1.
23. White S.R., Sottons N.R., Geubelle P.H., Moore J.S., Kessler M.R. et al., Autonomic healing of polymer composites. Nature, 2001. 409(6822): p. 794-797.
24. Aïssa B., Therriault D., Haddad E., Jamroz W., Self-healing materials systems: overview of major approaches and recent developed technologies. Advances in Materials Science and Engineering, 2012. 2012.
25. Mauldin T.C., Kessler M., Self-healing polymers and composites. International Materials Reviews, 2010. 55(6): p. 317-346.
26. Olugebefola S., Aragon A.M., Hansen C.J., Hamilton A.R., Kozola B.D. et al., Polymer microvascular network composites. Journal of composite materials, 2010. 44(22): p. 2587-2603.
27. Jones A., Rule J.D., Moore J.S., Sottos N.R., White S.R., Life extension of self-healing polymers with rapidly growing fatigue cracks. Journal of the Royal Society Interface, 2007. 4(13): p. 395-403.
28. Jones A.S., Rule J.D., Moore J.S., White S.R., Sottos N.R., Catalyst morphology and dissolution kinetics of self-healing polymers. Chemistry of Materials, 2006. 18(5): p. 1312-1317.
29. Bevan C., Snellings W.M., Dodd D.E., Egan G.F., Subchronic toxicity study of dicyclopentadiene vapor in rats. Toxicology and industrial health, 1992. 8(6): p. 353-367.
30. Caruso M.M., Delafuente D.A., Ho V., Sottos N.R., Moore J.S. et al., Solvent-promoted self-healing epoxy materials. Macromolecules, 2007. 40(25): p. 8830-8832.
31. Wu J., Weir M.D., Melo M.A.S., Xu H.H.K., Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles. Journal of dentistry, 2015. 43(3): p. 317-326.
32. Cury J.A., Tenuta L.M.A., Enamel remineralization: controlling the caries disease or treating early caries lesions? Brazilian oral research, 2009. 23: p. 23-30.
33. Ten Cate J., Novel anticaries and remineralizing agents: prospects for the future. Journal of Dental Research, 2012. 91(9): p. 813-815.
34. Xu H. et al., Strong nanocomposites with Ca, PO4, and F release for caries inhibition. Journal of dental research, 2010. 89(1): p. 19-28.
35. Xu H.H.K., Weir M.D., Sun L., Moreau J.L., Takagi S. et al., Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dental Materials, 2011. 27(8): p. 762-769.
36. Marovic D., Tarle Z., Hiller K.A., Müller R., Ristic M. et al., Effect of silanized nanosilica addition on remineralizing and mechanical properties of experimental composite materials with amorphous calcium phosphate. Clinical oral investigations, 2014. 18(3): p. 783-792.
37. Chiari M.D., Rodrigues M.C., Xavier T.A., Souza E.M.N., Chavez V.E.A. et al., Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. Dental Materials, 2015. 31(6): p. 726-733.
38. Xu H.H., Moreau J.L., Dental glass‐reinforced composite for caries inhibition: Calcium phosphate ion release and mechanical properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2010. 92(2): p. 332-340.
40. Skrtic D., Antonucci J.M., Eanes E.D., Eichmiller F.C., Schumacher G.E., Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2000. 53(4): p. 381-391.
41. Dickens S.H., Flaim G.M., Takagi S., Mechanical properties and biochemical activity of remineralizing resin-based Ca–PO4 cements. Dental Materials, 2003. 19(6): p. 558-566.
42. Xu H.H.K., Sun L., Weir M.D., Antonucci J.M., Takagi S. et al., Nano DCPA-whisker composites with high strength and Ca and PO4 release. Journal of dental research, 2006. 85(8): p. 722-727.
43. Cheng L., Weir M.D., Xu H.H.K., Antonucci J.M., Lin N.J. et al., Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012. 100(5): p. 1378-1386.
44. Zhang K., Melo M.A.S., Cheng L., Weir M.D., Bai Y. et al., Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dental Materials, 2012. 28(8): p. 842-852.
45. Xu H.H.K., Weir M.D., Sun L., Ngai S., Takagi S. et al., Effect of filler level and particle size on dental caries-inhibiting Ca–PO 4 composite. Journal of Materials Science: Materials in Medicine, 2009. 20(8): p. 1771-1779.
46. Xu H.H.K., Weir M.D., Sun L., Takagi S., Chow L.C., Effects of calcium phosphate nanoparticles on Ca-PO4 composite. Journal of dental research, 2007. 86(4): p. 378-383.
47. Moreau J.L., Sun L., Chow L.C., Xu H.H.K., Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 98(1): p. 80-88.
48. Weir M., Chow L., Xu H.H.K., Remineralization of demineralized enamel via calcium phosphate nanocomposite. Journal of dental research, 2012. 91(10): p. 979-984.
49. Melo M.A.S., Weir M.D., Rodrigues L.K.A., Xu H.H.K., Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dental Materials, 2013. 29(2): p. 231-240.
50. Skrtic D., Hailer A.W., Takagi S., Antonucci J.M., Eanes E.D., Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. Journal of Dental Research, 1996. 75(9): p. 1679-1686.
51. Skrtic D., Antonucci J.M., Eanes E., Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. Journal of research of the National Institute of Standards and Technology, 2003. 108(3): p. 167.
52. Langhorst S. J. O’Donnell, and D. Skrtic, In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dental Materials, 2009. 25(7): p. 884-891.
53. Zhang L., Weir M.D., Chow L.C., Antonucci J.M., Chen J. et al. Novel rechargeable calcium phosphate dental nanocomposite. Dental Materials, 2016. 32(2): p. 285-293.
54. Drummond J.L., Degradation, fatigue, and failure of resin dental composite materials. Journal of dental research, 2008. 87(8): p. 710-719.
55. Cramer N., Stansbury J., Bowman C., Recent advances and developments in composite dental restorative materials. Journal of dental research, 2011. 90(4): p. 402- 416.
56. Bradshaw D.J., Lynch R.J., Diet and the microbial aetiology of dental caries: new paradigms. International dental journal, 2013. 63: p. 64-72.
57. Wang Z., Shen Y., Haapasalo M., Dental materials with antibiofilm properties. Dental Materials, 2014. 30(2): p. e1- e16.
58. Fan C., Chu L., Rawls H.R., Norling B.K., Cardenas H.L. et. al, Development of an antimicrobial resin—a pilot study. dental materials, 2011. 27(4): p. 322-328.
59. Cheng L., Weir M.D., Xu H.H.K., Antonucci J.M., Kraigsley A.M. et al., Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dental Materials, 2012. 28(5): p. 561-572.
60. McDonnell G., Russell A.D., Antiseptics and disinfectants: activity, action, and resistance. Clinical microbiology reviews, 1999. 12(1): p. 147-179.
61. Chatzistavrou X., Fenno C., Faulk D., Badylak S., Kasuga T. et al., Fabrication and characterization of bioactive and antibacterial composites for dental applications. Acta biomaterialia, 2014. 10(8): p. 3723-3732.
62. Völker C., Oetken M., Oehlmann J., The biological effects and possible modes of action of nanosilver, in Reviews of Environmental Contamination and Toxicology Volume 223. 2013, Springer. p. 81-106.
63. Sotiriou G.A., Pratsinis S.E., Antibacterial activity of nanosilver ions and particles. Environmental science & technology, 2010. 44(14): p. 5649-5654.
64. Imazato S., Kinomoto Y., Tarumi H., Ebisu S., Tay F.R., Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dental Materials, 2003. 19(4): p. 313-319.
65. Beyth N., Yudovin-Farber I., Bahir R., Domb A.J., Weiss E.I., Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials, 2006. 27(21): p. 3995-4002.
66. Li F., Chen J., Chai Z., Zhang L., Xiao Y. et al., Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. Journal of dentistry, 2009. 37(4): p. 289-296.
67. Beyth N., Yudovin-Farber I., Perez-Davidi M., Domb A.J., Weiss E.I., Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proceedings of the National Academy of Sciences, 2010. 107(51): p. 22038-22043.
68. Simoncic B., Tomsic B., Structures of novel antimicrobial agents for textiles-a review. Textile Research Journal, 2010. 80(16): p. 1721-1737.
69. Li F., Weir M., Xu H.H.K., Effects of quaternary ammonium chain length on antibacterial bonding agents. Journal of dental research, 2013. 92(10): p. 932-938.
70. Zhang K., Cheng L., Weir M.D., Bai Y., Xu H.H.K., Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite. International journal of oral science, 2016. 8(1): p. 45-53.
71. Salehi S., Davis H.B., Ferracane J.L., Mitchell J.C., Sol-gel-derived bioactive glasses demonstrate antimicrobial effects on common oral bacteria. American journal of dentistry, 2015. 28(2): p. 111-115.
72. Khvostenko D., Hilton T.J., Ferracane J.L., Mitchell J.C., Kruzic J.J., Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dental Materials, 2016. 32(1): p. 73-81.
73. Yoon K.Y., Byeon J.H., Park J.H., Hwang J., Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment, 2007. 373(2-3): p. 572-575.
74. Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A., Reip P., Allaker R.P., Characterisation of copper oxide nanoparticles for antimicrobial applications. International journal of antimicrobial agents, 2009. 33(6): p. 587-590.
75. Aydin Sevinç B., Hanley L., Antibacterial activity of dental composites containing zinc oxide nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010. 94(1): p. 22-31.
76. Lendenmann U., Grogan J., Oppenheim F., Saliva and dental pellicle-a review. Advances in dental research, 2000. 14(1): p. 22-28.
77. Donlan R.M., Costerton J.W., Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 2002. 15(2): p. 167-193.
78. Müller R., Eidt A., Hiller K., Katzur V., Subat M. et al., Influences of protein films on antibacterial or bacteria-repellent surface coatings in a model system using silicon wafers. Biomaterials, 2009. 30(28): p. 4921-4929.
79. Ishihara K., Nomura H., Mihara T., Kurita K., Iwasaki Y. et al., Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998. 39(2): p. 323-330.
80. Lewis A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces, 2000. 18(3-4): p. 261-275.
81. Sibarani J., Takai M., Ishihara K., Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids and Surfaces B: Biointerfaces, 2007. 54(1): p. 88-93.
82. Kuiper K.K., Nordrehaug J.E., Early mobilization after protamine reversal of heparin following implantation of phosphorylcholine-coated stents i n totally occluded coronary arteries. The American journal of cardiology, 2000. 85(6): p. 698-702.
83. Lewis A., Tolhurst L., Stratford P., Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre-and post-implantation. Biomaterials, 2002. 23(7): p. 1697-1706. 84. Zhang N., Ma J., Melo M.A.S., Weir M.D., Bai Y. et al., Protein-repellent and antibacterial dental composite to inhibit biofilms and caries. Journal of dentistry, 2015. 43(2): p. 225-234.