Molibden ve Arseniğin Tarla Koşullarında Buğday Bitkisinin Verimine ve Toksikliğine Etkilerinin Belirlenmesi

Endüstrinin gelişmesi ve antropojenik etkiler ağır metal kaynaklı çevre kirliliğinin artmasına etki etmektedir. Çalışmada buğday (Triticum aestivum L.) bitkisinde potansiyel toksik olan Molibden (Mo) ve Arsenik (As) ağır metallerinin buğday verimine kısıtlayıcı etkisinin, buğday bitkisindeki potansiyel toksik ağır metalin toksiklik belirtilerinin belirlenmesi hedeflendi. Tarla şartlarında kireçli topraklarda Mo ve As elementinin farklı uygulama dozlarında (0, 10, 20, 40 mg kg-1) buğday-nohut münavebe sisteminde, tesadüf blokları deneme desenine göre 3 tekrarlı çalışma organize edildi. Çalışma sonucunda; 3 yılda buğday bitkisinde Mo ve As uygulamaları sırasıyla %27.43, %16.17 ve %6.85’lik ve %30.2, % 49.50 ve %18.18 verim düşüşü meydana geldi. Mo uygulaması sonucu buğday verimlerinde meydana gelen azalma birinci ve ikinci buğday ekim yıllarında istatistiksel anlamda önemli oldu (F=13.9**, P<0.01) (F=16.2**, P<0.01). As uygulaması sonucu buğday verimlerinde meydana gelen azalma istatistiki anlamda her üç yılda da önemli (F= 5.33*, P<0.05) (F=15.05**, P<0.01) (F=5.36*, P<0.05) bulundu. Maksimum verimde %10’luk azalmayı toprağa uygulanan Mo ve As’in 14 kg da-1 ve 13.7 mg kg-1 düzeyi sağladı. Mo toksiklik belirtileri; cılız ve küçük sağlıksız bitki, yaprak uçlarında başlayan sarı-turuncu sararmalar, yüksek dozda kurumalar olarak gözlendi. As toksiklik belirtileri; bitki boylarının kısalması ve parsel içerisinde bitki yoğunluğunun azalması olarak ortaya çıktı.

Determination of the Effects of Molybdenum and Arsenic on Yield and Toxicity of Wheat Plant in Field Conditions

The development of industry and anthropogenic effects affect the increase in environmental pollution caused by heavy metals. In this study, it was aimed to determine the restrictive effect of Molybdenum (Mo) and Arsenic (As) heavy metals, which are potentially toxic in wheat (Triticum aestivum L.) on wheat yield, and to determine the toxicity signs of potentially toxic heavy metal in wheat plant. Three repetitive studies were organized in the wheat-chickpea alternation system according to the randomized blocks trial design at different application doses (0, 10, 20, 40 mg kg-1) of Mo and As element in calcareous soils under field conditions. In the results of working; In 3 years, Mo and As applications in wheat plant decreased yields of 27.43%, 16.17% and 6.85% and 30.2%, 49.50% and 18.18%, respectively. The decrease in wheat yields as a result of Mo application was statistically significant in the first and second wheat planting years (F=13.9**, P<0.01) (F=16.2**, P<0.01). The decrease in wheat yields as a result of the application of As was statistically significant (F= 5.33*, P<0.05) (F=1 5.05**, P<0.01) (F=5.36*, P<0.05) in all three years. 14 kg da-1 and 13.7 mg kg-1 level of Mo and As applied to the soil provided 10% reduction in maximum yield. Signs of Mo toxicity; The weak and small unhealthy plant was observed as yellow-orange yellowing starting at the leaf tips and drying at high doses. As signs of toxicity; It appeared as a shortening of plant heights and a decrease in plant density in the plot.

___

  • Anbar, A. D. (2004). Molybdenum stable isotopes: Observations, interpretations and directions. Reviews in Mineralogy and Geochemistry, 55, 429–454.
  • Andrew, P., Brian, J., & Alloway J. (19912). The Transfer of Cadmium from Agricultural Soils to the Human Food Chain in: Adriado DC (eds). Biogeochemistry of trace metals (pp.109–158). CRC Press. London.
  • Ashfaque, F., Inam, A., Sahay, S., & Iqbal, S. (2016). Influence of heavy metal toxicity on plant growth, metabolism and its alleviation by phytoremediation - A promising technology. Journal of Agriculture and Ecology Research International, 6(2), 1–19. https://doi.org/10.9734/jaeri/2016/23543 Beusichem, M. L. (1990). Plant nutrition-physiology and applications, effect of arsenic and molybdenum on plant response of cauliflower (Brassica oleracea) grown in sand culture. Kluwer Academic Publishers. Canada
  • Brozoska, M. M., & Moniuszko-Jakoniuk, J. (2001). Interactions between cadmium and zinc in the organism. Food and Chemical Toxicology, 39 (10), 967–980. https://doi.org/10.1016/S0278-6915(01)00048-5
  • Cao, Q., Hu, Q. H., Khan, S., Wang, Z. J., Lin, A. J., Du, X., & Zhu, Y. G. (2007). Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. Chinese Academy of Sciences, China.
  • Chatterjee, C., & Nautiyal, N. (2006). Molybdenum stress affects viability and vigor of wheat seeds, Journal of Plant Nutrition, 24(9), 1377-1386. https://doi.org/10.1081/PLN-100106988
  • Davis, R. D., & Beckett, P. H. T. (1978a). Upper critical levels of toxic elements in plants. II. critical levels of copper in young barley, wheat, rape, lettuce and ryegrass, and of nickel and zinc in young barley and ryegrass. New Phytologist, 80(1), 23–32.
  • Davis, R. D., Beckett, P. H. T., & Wollan, E. (1978b). Critical levels of twenty potentially toxic elements in young spring barley. Plant and Soil, 49, 395–408.
  • DİE (1998). Tarımsal yapı (üretim, fiyat, değer). Başbakanlık Devlet İstatistik Enstitüsü Yayınları, DİE Matbaası, Ankara.
  • Dubey, R. S. (2011). Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (eds), Reactive oxygen species andantioxidants in higher plants (pp 177-203). CRC Press, Boca Raton, USA.
  • Gedikoğlu, İ., Kalınbacak, K., Yalçıklı, A., & Yurdakul, İ. (1997). Bazı ağır metallerin topraktan ekstarsiyon yöntemlerinin karşılaştırılması ve buğday yetiştirilerek kalibrasyonu. Toprak ve Su Kaynakları Enstitüsü yayınları No:106. Ankara, Türkiye.
  • Guo, G., Lei, M., Wang, Y., Song, B., & Yang, J. (2018). Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. International Journal of Environmental Research and Public Health, 15 (2601), 2–17. https://doi.org/10.3390/ijerph15112601
  • Han, Z., Wan, D., Tian, H., He, W., Wang, Z., & Liu, Q. (2019). Pollution assessment of heavy metals in soils and plants around a molybdenum mine in central China. Polish Journal of Environmental Studies, 28 (1), 123–133. https://doi.org/10.15244/pjoes/83693
  • Havlin, J. L., Tisdela, S. L., Wernel, N. L., & Beaton, J. D. (2017). Soil fertility and fertiliers. Pearson India Education Services. India.
  • He, Y., Zhang, T., Sun, Y., Wang, X., Cao, Q., Fang, Z., Chang, M., Cai, Q., & Lou, L. (2022). Exogenous IAA alleviates arsenic toxicity to rice and reduces arsenic accumulation in rice grains. Journal of Plant Growth Regulation, 41, 734–741.
  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agro-ecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010
  • Imran, M., Sun, X., Hussain, S., Ali, U., Rana, M. S., Rasul, F., Shaukat, S., & Hu, C. (2020). Molybdenum application regulates oxidative stress tolerance in winter wheat under different nitrogen sources. Journal of Soil Science and Plant Nutrition, 20, 1827–1837. https://doi.org/10.1007/s42729-020-00254-6
  • Jackson M. L. (1962). Soil chemical analysis. Parallel Press. Madison, Wisconsin.
  • Kamrozzaman, M. M., Khan, M. A. H., Ahmed, S., Sultana, N., & Quddus, A. F. M. R. (2016) Evaluation of five wheat varieties on arsenic contaminated soils of Bangladesh, International Journal of Applied Sciences and Biotechnology, 4(3), 330–337. https://doi.org/10.3126/ijasbt.v4i3.15761
  • Kumar, J., Kumar, S., Mishra, S., & Singh, A. K. (2021). Role of zinc oxide nanoparticles in alleviating arsenic mediated stress in early growth stages of wheat. Journal of Environmental Biology, 42, 518-523. https://doi.org/10.22438/jeb/42/2(SI)/SI-273
  • Kumari, S., Khan, A., Singh, P., Kumar Dwivedi, S., Ojha Kumar, K., & Srivastava, A. (2019). Mitigation of As toxicity in wheat by exogenous application of hydroxamate siderophore of Aspergillus origin. Acta Physiologiae Plantarum, 41,107.
  • Kundu, R., Bhattacharyya, K., Majumder, A., & Pal, S. (2013). Response of wheat cultivars to arsenic contamination in polluted soils of West Bengal, India, Cereal Research Communications, 41(1), 66–77. https://doi.org/10.1556/crc.2012.0027
  • Li, Q., Cai, S., Mo, C. H., Chu, B., Peng, L. H., & Yang, F. H. (2010). Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil, Ecotoxicology and Environmental Safety, 73, 84–88. https://doi.org/10.1016/j.ecoenv.2009.09.002
  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  • Liu, W. X., Liu, J. V., Wu, M. Z., Li, Y., Zhao, Y., & Li, S. R. (2009). Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou China. Bulletin of Environmental Contamination and Toxicology, 82, 343–347.
  • Macnicol, R. D., & Beckett, P. T. H. (1985). Critical tissue concentrations of potentially toxic elements. Plant and Soil, 85, 107–129.
  • Maiti, S. K., Kumar, A., & Ahirwal, J. (2015). Bioaccumulation of metals in timber and edible fruit trees growing on reclaimed coal mine overburden dumps. International Journal of Mining Reclamation and Environment, 30, 231–244. https://doi.org/10.1080/17480930.2015.1038864
  • Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press. London, England.
  • Mclaughlin, M. J., Parker, D. R., & Clarke, J. M. (1999). Metals and micronutrients-food safety issues. Field Crops Research, 60 (1–2), 143–163. https://doi.org/10.1016/S0378-4290(98)00137-3
  • Olsen, S. R., Cole, V., Watanable, F. S., & Dean, L. A. (1954). Estimation of avaible phosphorus in soils by extraction with sodium bicarbonate, United States Department of Agriculture. Washington, United States of America.
  • Ozturk, A., & Arici, O. K. (2021). Carcinogenic-potential ecological risk assessment of soils and wheat in the eastern region of Konya (Turkey), Environmental Science and Pollution Research, 28, 5471–15484.
  • Pigna, M., Cozzolino, V., Caporale, A. G., Mora, M. L, Di-Meo, V., Jara, A. A., & Violante, A. (2010). Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. Journal of Soil Science and Plant Nutrition, 10(4), 428–442. http://dx.doi.org/10.4067/S0718-95162010000200004
  • Rana, M. S., Sun, X., Imran, M., Khan, Z., Moussa, M. G., Abbas, M., Bhantana, P., Syaifudin, M., Din, I. U., Younas, M., Shah, Md. A., Afzal, J., & Hu, C. (2020). Mo-inefficient wheat response toward molybdenum supply in terms of soil phosphorus availability, Journal of Soil Science and Plant Nutrition, 20, 1560–1573. https://doi.org/10.1007/s42729-020-00298-8
  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180,169–181. https://doi.org/10.1016/j.plantsci.2010.08.016
  • Richards, L. A. (1954). Diagnosis and improvement saline and alkaline soils. United States Department of Agriculture. Washington, United States of America.
  • Rizvi, A., Ahmed, B., Zaidi, A., & Khan, M. S. (2019). Heavy metal mediated phytotoxic impact on winter wheat: oxidative stress and microbial management of toxicity by Bacillus subtilis BM2. The Royal Society of Chemistry, 9, 6125–6142. https://doi.org/10.1039/C9RA00333A
  • Roy, M., & McDonald, L. M. (2015). Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degradation and Development, 26, 785–792. https://doi.org/10.1002/ldr.2237
  • Sadeghi, M., Noroozi, M., Kargar, F., & Mehrbakhsh, Z. (2020). Heavy metal concentration of wheat cultured in golestan province, Iran and its health risk assessment, Journal of Environmental Health and Sustainable Development, 5(2), 993–1000. https://doi.org/10.18502/jehsd.v5i2.3386
  • Saeed, M., Quraishi, U. M., & Malik, R. N. (2021). Arsenic uptake and toxicity in wheat (Triticum aestivum L.): A review of multi-omics approaches to identify tolerance mechanisms, Food Chemistry, 355(1), 129607. https://doi.org/10.1016/j.foodchem.2021.129607
  • Sponza, D., & Karaoğlu, N. (2002). Environmental geochemistry and pollution studies of Aliağa metal industry district. Environment International, 27(7), 541–553. https://doi.org/10.1016/S0160-4120(01)00108-8
  • Soto, J., Ortiz, J., Herrera, H., Fuentes, A., Almonacid, L., Charles T. C., & Arriagada, C. (2019). Enhanced Arsenic Tolerance in Triticum aestivum Inoculated with Arsenic-Resistant and Plant Growth Promoter Microorganisms from a Heavy Metal-Polluted Soil. Microorganisms, 7(9), 348. https://doi.org/10.3390/microorganisms7090348
  • Şener, S., Gedikoğlu, İ., Bilgin, N., Güngör, H., & Üstün, H. (1994). Çeşitli etkenlerle kirlenen sulama sularının toprak özelliklerine ve bitki verimine etkisi. Köy Hizmetleri Genel Müdürlüğü Yayınları, No: 80, Ankara, Türkiye.
  • Thalassinos, G., & Antoniadis, V. (2021). Monitoring potentially toxic element pollution in three wheat-grown areas with a long history of industrial activity and assessment of their effect on human health in Central Greece, Toxics, 9(11), 293. https://doi.org/10.3390/toxics9110293
  • Ulrich, A., & Hills, F. J. (1967). Principles and practices of plant analysis. Soil testing and plant analysis. Part II. SSSA Spec. Publ. Ser. 2. SSSA, Madison, WI.
  • Veliu, A. (2016). Determination of heavy metals in soil in the industrial area. Journal of International Environmental Application and Science, 11(4), 391–395.
  • Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter and a proposed modification of the cromic acid titration method, Soil Science, 37(1), 29–38.
  • Wang, J., Li, L., KeeL, S., Liu, X., & Pan, G. (2020). Responses of wheat and rice grain mineral quality to elevated carbon dioxide and canopy warming. Field Crops Research, 249, 107753. https://doi.org/10.1016/j.fcr.2020. 107753
  • Wang, Z. W., Nan, Z. R., Wang, S. L., & Zhao, Z. J. (2011). Accumulation and distribution of cadmium and leasd in wheat (Triticum aestivum L.) grown in contaminated soils from the oasis, north-west China. Journal of the Science of Food and Agriculture, 91, 377–384. https://doi.org/10.1002/jsfa.4196
  • Yurdakul, İ., Kalınbacak, K., Terzi, D., & Peker, R. M. (2017a). Ağır metallerin tarla şartlarında buğday (Triticum Aestivum L.) verimine toksik etkisinin belirlenmesi. Nevşehir Bilim ve Teknoloji Dergisi, 6(2), 580–593. https://doi.org/10.17100/nevbiltek.327148
  • Yurdakul, İ., Kalınbacak, K., Terzi, D., & Peker, R. M. (2017b). Bazı ağır metallerin (Cu ve Zn) tarla şartlarında ekmeklik buğday verimine ve toksikliğine etkilerinin belirlenmesi. Türk Doğa ve Fen Dergisi, 6(2), 50–56.
  • Yurdakul, İ. (2018). Toprak gübre su bitki organik materyal ve mikrobiyoloji laboratuvar el kitabı. Tarım ve Orman Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Toprak Gübre ve Su Kaynakları Merkez Araştırma Enstitüsü Müdürlüğü yayınları, No: T–72, Ankara, Türkiye.
  • Zhao, H., Wu, Y., Lan, X., Yang, Y., Wu, X., & Du, L. (2022). Comprehensive assessment of harmful heavy metals in contaminated soil in order to score pollution level. Scientific Reports, 12, 3552. https://doi.org/10.1038/s41598-022-07602-9