Domateste Kök Ur Nematodu Mücadelesinde Kitosanın Toprak ve Yaprak Uygulamaları

Bu çalışmada kontrollü koşullarda (24 ± 1°C, %60 ± 5 nem) domates bitkisinde kitosanın toprak, yaprak ve eş zamanlı toprak+yaprak uygulamalarının kök ur nematodu Meloidogyne incognita’nın gal ve yumurta paketi üzerindeki etkisi araştırılmıştır. Pozitif kontrol olarak Fluopyram (0.16 ml/L), negatif kontrol olarak sadece nematod uygulanan bitkiler kullanılmıştır. Çalışma her bir uygulama için tesadüf parselleri deneme deseninde 5 tekerrürlü olarak kurulmuştur. Çalışmada kitosanın %1 oranında seyreltilmiş sıvı süspansiyonu kullanılmıştır. Toprak uygulamasında her saksıya 5 ml mezür ile uygulanırken, yaprak uygulamasında ise hazırlanan %1’lik sıvı süspansiyonu portatif el püskürtücü kullanılarak çözelti bitene kadar uygulanmıştır. Çalışma nematod inokulasyonundan 60 gün sonra 1-9 gal ve yumurta paketi indeksine göre değerlendirilmiştir. En düşük gal (2.8) ve yumurta paketi (2.4) indeksi eş zamanlı toprak+yaprak uygulamasında tespit edilmiş ve pozitif kontrol nematisitle aynı istatistiki grupta yer almıştır. Kitosanın toprak ve yaprak uygulamasının beraber yapılması durumunda nematisidal etkinin arttığı belirlenmiştir. Bu sonuçlar kitosan uygulamalarının kök ur nematodu kontrolünde başarılı olduğunu desteklemektedir.

Soil and Foliar Applications of Chitosan in the Control of Root-Knot Nematode in Tomato

In this research, the effect of soil, foliar and simultaneous soil+foliar applications of chitosan on gall and egg mass of root-knot nematode Meloidogyne incognita was investigated in tomato plants under controlled conditions (24±1°C, 60±5% RH). Fluopyram (0.16 ml/L) was used as positive control while only nematode-treated plants were considered as negative control. The study was set up in a randomized plot design with 5 replications for each application. The liquid suspension of chitosan diluted at 1% was used. In soil application, 5 ml was applied to each pot by using a graduated cylinder while in foliar application, the liquid suspension at 1% was applied using a portable hand sprayer until the solution was finished. The study was evaluated according to the 1-9 gall and egg mass index 60 days after inoculation of nematodes. The lowest gall (2.8) and egg mass (2.4) indexes were detected in the simultaneous soil+foliar application and took place in the same statistical group with the positive control nematicide. It was determined that the nematicidal effect of chitosan has increased in the case of combined soil and foliar applications. These results support the fact that chitosan applications are successful in the control of root-knot nematode.

___

  • Abd El-Aziz, M. H., & Khalil, M. S. (2020). Antiviral and Antinematodal potentials of chitosan. Journal of Plant Science and Phytopathology, 4, 055-059. https://doi.org/10.29328/journal.jpsp.1001051
  • Alfy, H., Ghareeb, R. Y., Soltan, E., & Farag, D. A. (2020). Impact of chitosan nanoparticles as insecticide and nematicide against Spodoptera littoralis, Locusta migratoria, and Meloidogyne incognita. Plant Cell Biotechnology Molecular Biology, 21, 126-140.
  • Anitha, A., Sowmya, S., Kumar, P. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., Tsurkan, M., & Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. Progress in polymer science, 39(9), 1644-1667. https://doi.org/10.1016/j.progpolymsci.2014.02.008
  • Ashraf, M. S., & Khan, T. A. (2010). Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Archives of Phytopathology and Plant Protection, 43(6), 609-614. https://doi.org/10.1080/03235400801972434 Bittelli, M., Flury, M., Campbell, G. S., & Nichols, E. J (2001). Reduction of transpiration through foliar application of chitosan. Agricultural and Forest Meteorology, 107, 167–175. https://doi.org/10.1016/S0168-1923(00)00242-2
  • Castaneda-Alvarez, C., & Aballay, E. (2016). Rhizobacteria with nematicide aptitude: Enzymes and compounds associated. World Journal of Microbiology and Biotechnology, 32(12), 203.
  • Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M., & Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), 624. https://doi.org/10.3390/agriculture 10120624
  • Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1573), 1987–1998.
  • Chen, J. X., & Song, B. A. (2021). Natural nematicidal active compounds: Recent research progress and outlook. Journal of Integrative Agriculture, 20(8), 2015-2031.
  • El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine drugs, 8(4), 968-987.
  • El-Sayed, S. M., & Mahdy, M. E. (2015). Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. International Journal of ChemTech Research, 7(4), 1985-1992.
  • Emami Bistgani, Z., Siadat, S. A., Bakhshandeh, A., & Ghasemi Pirbalouti, A. (2017). The effect of drought stress and elicitor of chitosan on photosynthetic pigments, proline, soluble sugars and lipid peroxidation in Thymus deanensis Celak. in Shahrekord climate. Environmental Stresses in Crop Sciences, 10(1), 12-19.
  • Fan, Z., Qin, Y., Liu, S., Xing, R., Yu, H., Li, K., & Li, P. (2022). Fluoroalkenyl-grafted chitosan oligosaccharide derivative: An exploration for control nematode Meloidogyne incognita. International Journal of Molecular Sciences, 23(4), 2080.
  • Faoro, F., Maffi, D., Cantu, D., & Iriti, M. (2008). Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. BioControl, 53, 387–401.
  • Forghani, F., & Hajihassani, A. (2020). Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Frontiers in Plant Science, 11, 1125.
  • Göze Özdemir, F. G. (2022). Management of disease complex of Meloidogyne incognita and Fusarium oxysporum f. sp. radicis lycopersici on tomato using some essential oils. Plant Protection Bulletin, 62(4), 27-36. https://doi.org/10.16955/bitkorb.1172169
  • Göze Özdemir, F. G., Tosun, B., Şanlı, A., & Karadoğan, T. (2022a). Bazı Apiaceae uçucu yağlarının Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae)'ya karşı nematoksik etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(3), 529-539.
  • Göze Özdemir, F. G., Arıcı, Ş. E., & Elekcioğlu, İ. H. (2022b). Interaction of Meloidogyne incognita (Kofoid & White, 1919) (Nemata: Meloidogynidae) and Fusarium oxysporum f. sp. radicis-lycopersici Jarvis & Shoemaker in tomato F1 hybrids with differing levels of resistance to these pathogens. Turkish Journal of Entomology, 46(1), 63-73. https://doi.org/10.16970/entoted.1027969
  • Göze Özdemir, F. G., Çevik, H., Ndayiragije, J. C., Özek, T., & Karaca, İ. (2022c). Nematicidal effect of chitosan on Meloidogyne incognita in vitro and on tomato in a pot experiment. International Journal of Agriculture Environment and Food Sciences, 6(3), 410-416. https://doi.org/10.31015/jaefs.2022.3.10
  • Hirano, S., Nakahira, T., Nakagawa, M. & Kim, S. K. (1999). The preparation and applications of functional fibres from crab shell chitin. Journal of Biotechnol, 70, 373–377. https://doi.org/10.1016/S0168-1656(99)00090-5
  • Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N., Garganoand, M., & Faoro, F. (2009). Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environmental and Experimental Botany, 66, 493–500. https://doi.org/10.1016/j. envexpbot.2009.01.004
  • De Jin, R., Suh, J. W., Park, R. D., Kim, Y. W., Krishnan, H. B., & Kim, K. Y. (2005). Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill.). Nematology, 7(1), 125-132.
  • Kalaiarasan, P., Lakshmanan, P., Rajendran, G., & Samiyappan, R. (2006). Chitin and chitinolytic biocontrol agents for the management of root knot nematode, Meloidogyne arenaria in groundnut (Arachis hypogaea L.) cv. Co3. Indian Journal of Nematology, 36(2), 181–186.
  • Khalil, M. S., & Badawy, M. E. (2012). Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode, Meloidogyne incognita. Plant Protection Science, 48(4), 170-178. https://doi.org/10.17221/46/2011-PPS
  • Khan, W., Prithiviraj, B., & Smith, D. L. (2002). Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean. Photosynthesis Research, 40, 621–624.
  • Kiewnick, S., & Sikora, R. A. (2006). Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biological control, 38(2), 179-187. https://doi.org/10.1016/j.biocontrol.2005.12.006
  • Korayem, A. M., Youssef, M. M. A., & Mohamed, M. M. M. (2008). Effect of chitin and abamectin on Meloidogyne incognita infecting rapeseed. Journal of Plant Protection Research, 48, 365–370.
  • Kulikov, S. N., Chirkov, S. N., Il’Ina, A. V., Lopatin, S. A., & Varlamov, V. P. (2006). Effect of the molecular weight of chitosan on its antiviral activity in plants. Applied Biochemistry and Microbiology, 42, 200-203.
  • Ladner, D. C., Tchounwou, P. B., & Lawrence, G. W. (2008). Evaluation of the effect of ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculentum. International Journal of Environmental Research and Public Health, 5(2), 104–110. https://doi.org/10.3390/ijerph5020104
  • Lizárraga-Paulín, E. G., Torres-Pacheco, I., Moreno-Martínez, E., & Miranda-Castro, S. P. (2011). Chitosan application in maize (Zea mays) to counteract the effects of abiotic stress at seedling level. African Journal of Biotechnology, 10(34), 6439-6446. DOI: 10.5897/AJB10.1448
  • Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International journal of molecular sciences, 17(7), 996. https://doi.org/10.3390/ijms17070996
  • Mota, L. C. B. M., & dos Santos, M. A. (2016). Chitin and chitosan on Meloidogyne javanica management and on chitinase activity in tomato plants. Tropical Plant Pathology, 41(2), 84–90.
  • Mouniga, R., Anita, B., Shanthi, A., Lakshmanan, A., & Karthikeyan, G. (2022). Phenol and antioxidant enzymatic activity in root knot nematode, Meloidogyne incognita infected tomato plants treated with chitosan nanoparticles. The Pharma Innovation Journal, 11(4), 241-245. https://doi.org/10.22271/tpi.2022.v11.i4d. 11754
  • Peiris, P. U. S. (2021). Use of botanicals in root-knot nematode control: a meta-analysis. Journal of Plant Diseases and Protection, 128(4), 913-922.
  • Pongprayoon, W., Roytrakul, S., Pichayangkura, R., & Chadchawan, S. (2013). The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant growth regulation, 70, 159-173.
  • Rabea, E. I., El Badawy, M. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4, 1457–1465. https://doi.org/10.1021/bm034130m
  • Sato, K., Kadota, Y., & Shirasu, K. (2019). Plant immune responses to parasitic nematodes. Frontiers in plant science, 1165. https://doi.org/10.3389/fpls.2019.01165
  • Sharathchandra, R. G., Raj, S. N., Shetty, N. P., Amruthesh, K. N., & Shetty, H. S. (2004). A Chitosan formulation Elexa™ induces downy mildew disease resistance and growth promotion in pearl millet. Crop Protection, 23(10), 881-888. https://doi.org/10.1016/j.cropro.2003.12.008
  • Xoca-Orozco, L. Á., Cuellar-Torres, E. A., González-Morales, S., Gutiérrez-Martínez, P., López-García, U., Herrera-Estrella, L., Vega-Arreguín, J., & Chacón-López, A. (2017). Transcriptomic analysis of avocado hass (Persea americana Mill) in the interaction system fruit-chitosan-Colletotrichum. Frontiers in plant science, 8, 956. https://doi.org/10.3389/fpls.2017.00956
  • Zhu, M. C., Li, X. M., Zhao, N., Yang, L., Zhang, K. Q., & Yang, J. K. (2022). Regulatory mechanism of trap formation in the nematode-trapping fungi. Journal of Fungi (Basel), 8(4), 406.