Comparative Physiological Study of Soybean (Glycine max L.) Cultivars Under Salt Stress

Soya (Glycine max L.), dünyada geniş alanlarda tarımı yapılan tarla bitkilerinden biridir. Mısır, sınırlı tatlı su kaynakları ile yarı kurak bir ülkedir. Sulama suyu ihtiyacını karşılamak için, geleneksel olmayan tuzlu ya da atık suların da sulamada kullanılması gerekmektedir. Bu amaçla, Mısır kökenli üç soya çeşidinde (Giza-35, Giza-82, and Giza-111), tuzlu olmayan (kontrol) ve tuzlu (10 mM NaCl) sulama suyunun etkileri, 2010 yılında Japonya'nın Hiroşima Üniversitesi, bitki besleme fizyolojisi laboratuarında yürütülen saksı çalışmaları ile araştırılmıştır. Tuzluluğun bitki üzerindeki etkileri, bitki büyüme parametreleri (BBP) ile belirlenmiştir. Su ilişkiler ise oransal su içeriği ve elektrolit sızıntısı ile saptanmıştır. Tuzluluk stresine tepkiler, bitki dokularındaki klorofil, azot, K, Na ve prolin içeriğinin analizi ile saptanmıştır. Sonuçlar, tuz stresi ile BBP arasındaki ilişkilerin negatif olduğunu göstermiştir. Buna karşın, Prolin, Na+ ve elektrolit sızıntısı, tuzluluk ile birlikte artmıştır. Bu çalışmadaki sonuçlar, Giza-111 çeşidinin incelenen tüm özelliklerinin diğer çeşitlere göre üstün olduğunu göstermiştir. Bitkideki kuru ağırlık, oransal su içeriği ile N, K+ ve prolin biriminin en yüksek değerlerin, çeşitler karşılaştırıldığında Giza-111 çeşidinde olduğu saptanmıştır. Diğer yandan, tuzluluk, tüm çeşitlerin saplarında elektrolit sızıntısı ve Na+ iyonu birikimini artırmıştır. Bununla birlikte en düşük Na+ birikimine Giza-111 çeşidinde rastlanılmıştır. Benzer şekilde, Giza-111 çeşidinin sızıntıya karşı membranlarının daha kararlı olduğu bulunmuştur. Sonuç olarak, çeşitlerin, tüm özellikleri karşılaştırıldığında Giza-111 çeşidinin tuzlu koşullarda yaşama uyum kabiliyetinin diğer çeşitlere göre daha iyi olduğu görülmüştür.

Tuzluluk Stresi Altındaki Soya Çeşitlerinin Fizyolojik Olarak Karşılaştırılması

Soybean (Glycine max L.) is one of the main crops and is widely cultivated in the world. Egypt has a semi-arid country with limited fresh water resources. In order to supply to irrigation water demand, it needs to use of non-conventional water resources such as saline or brackish water for irrigation. With this in mind, an pot experiments was conducted at plant nutritional physiology laboratory, Hiroshima University, Japan in 2010 to investigate the effect of irrigation with saline water on three Egyptian soybean cultivars (Giza-35, Giza-82, and Giza-111) under a non-saline (control) and saline (10 mM NaCl) conditions. The effects of salinity on crop was studied by measuring plant growth parameters. The water relations were estimated by studying the relative water contents and electrolyte leakage. The response to salinity stress was analysed by estimating the chlorophyll content, nitrogen, K+, Na+, proline content of plant tissue. The results showed a negative relationship between salinity stress and most of the measured plant growth parameters. In contrast, proline, Na+ and electrolyte leakage increased with irrigation water salinity. Results indicated that Giza-111 cultivar surpassed other cultivars in all characters under study. The highest value of crop dry weight, relative water content and accumulation of N, K+ and proline observed in Giza-111 with the compare to another cultivars. On the other hand, electrolyte leakage and Na+ ions accumulations were increased in the shoot under salinity in all cultivars. However, the lowest accumulation of Na+ ions was occured in Giza-111. Similarly, Giza-111 was more stabilited membrane to leakage. As a result, Giza-111 cultivar showed more capability and appropriate to survive under salinity condition compared with another cultivars regarding of almost all plant traits.

___

  • Abd-Alla MH, Vuong TD, Harper JE (1998). Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Sci. 38, 72-77 .
  • Alam MZ, Stuchbury T, Naylor R E L, Rashid M A (2004). Effect of salinity on growth of some modern rice cultivars. J. Agron. 3: 1-10.
  • Ashraf M, McNilley T (2004). Salinity tolerance in Barcia oil seeds. Plant Science, 23(2): 157-172.
  • Ashraf M, Mecneilly T (1988). Variability in salt tolerance of nine spring wheat cultivars. Journal of Agronomy and Crop Science, 160:14-21.
  • Bandeoglu E, Eyidogan F, Yucel M, Oktem A (2004). Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regulation, 42: 69-77.
  • Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
  • Bhivare VN, Nimbalkar JD (1984). Salt stress effect on growth and nutrition of French beans. Plant Soil. 80: 91-98.
  • Boyer J S (1982). Plant productivity and environment. Science 218: 443-448.
  • Bray EA, Bailey-Serres J, Weretilnyk E (2000). Responses to abiotic stresses. InW Gruissem, B Buchannan, R Jones, eds, Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, pp 1158-1249.
  • Cavalcanti F, Lima JP, Silva S, Viegas R, Silveria J (2007). Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. Journal of Plant Physiology, 164: 591-600.
  • Cheeseman JM (1988). Mechanisms of salinity tolerance in plants. Plant Physiol., 87: 547-550.
  • Chen D, Yu-Renpei D M, Yu DM (1996). Studies of relative salt tolerance of crops. Salt tolerance of some main crop species, Acta pedologica science, 33: 121-128.
  • Chen K, Hu G, Keutgen N, Janssens MJJ, Lenz F (1999). Effects of NaCl salinity and CO2 enrichment on pepino (Solanummuricatum). II. Leaf photosynthetic propertiesand gas-exchange. Scientia Horticulturae 81: 43-56.
  • Chow WS, Ball MC, Anderson JM (1990). Growth and photosynthetic responses of spinach to salinity: implication of K+ nutrition for salt tolerance. Aust. J. Plant Physiol. 17: 563-578.
  • Delauney AJ, Verma DPS (1993). Proline biosynthesis and osmoregulation in plants. Plant Journal, 4: 215-223.
  • Delgado MJ, Ligero F, Liuch C (1994). Effects of salt stress on growthand nitrogen fixation by pea, faba-bean, common bean and soybeanplant. Soil Biol. Biochem. 26, 371-376.
  • Duzan HM, Zhou X, Souleimanov A, Smith DL (2004). Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merrill] root hairs under abiotic stress conditions. J. Exp. Bot. 55: 2641-2646.
  • El-Arquan MY, El-Hamdi KH, Seleem EM, El-Tantawy IM (2002). Nutrient uptake of sugar beet as affected by NPK fertilization and soil salinity levels. Egypt J. Soil Sci. 42(4):783-797.
  • Elsheikh EA, Wood M (1995). Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biol. Biochem. 27: 657-661.
  • Gad N (2005). Interactive effect of salinity and cobalt on tomato plants. II. Somephysiological parameters as affected by cobalt and salinity. Res. J. Agric. Bio. Sci. 1: 270-276.
  • Gadallah MAA (2000) Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit. J Arid Environ. 44: 451-467.
  • Greenway H, Munns R (1980). Mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 31: 149-190.
  • Hafeez FY, Aslam J, Malik KA (1988). Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vigna radiata (L.) Wilczek. Plant and Soil. 106: 3-8.
  • Hajibagheri MA, Harvey, DMR, Flowers TJ (1987). Quantitative ion distribution within root cells of salt- sensitive and salt-tolerant maize varieties. New Phyt. 105: 367-379.
  • Hajlaoui H, Denden M, Bouslama M (2006). Effet du chlorure de sodium sur les critères morpho- physiologiques et productifs du pois chiche (Cicer arietinum L.). Institut National de Recherches en Génie Rural, Eaux et Forêts 8:171-187.
  • Hansen EH, Munns DN (1988). Effects of CaSO4 and NaCl on growth and nitrogen fixation of Leucaena leucocephala. Plant and Soil 107: 94-99.
  • Helal HM, Mengel K (1979) . Nitrogen metabolism of young barley plants as affected by NaCl salinity and potassium. Plant Soil. 51, 457-462.
  • Helal HM, Mengel K (1981). Interaction between light intensity and NaCl salinity and their effects on growth, CO2 assimilation and photosynthetic conversion in young broad beans. J. Plant Physiol. 67: 265-275.
  • Hussain M, Malik MA, Farooq M, Khan MB, Akram M, Saleem MF (2009). Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. J. Agron. Crop Sci. 195: 98-109.
  • Jamil M, Rehman S, Lee KJ, Kim JM, Kim HS, Rha ES (2007). Salinityreduced growth PS II photochemistry and chlorophyll content in radish. Sci. Agric. 64: 1-10.
  • Jiang H, Wang XH, Deng QY, Yuan LP, Xu DQ (2002). Comparison of some photosynthetic characters between two hybrid rice combinations differing in yield potential. Photosynthetica 40: 133-137.
  • Katerji N, Hoorn JW, Hamdy A, Mastrorilli M (2003). Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric Water Manage 62: 37-66.
  • Katerji N, Vanhoorn JW, Hamdy A, Mastrorilli M, Mou Karzel E (1997). Osmotic adjustment of sugar beets inresponse to soil salinity and its influence on stomatal conductance, growth and yield. Agric Water Manage 34: 57-69.
  • Khan MH, Singha K LB, Panda SK ( 2002).Changes in antioxidant levels in Oryza sativa L.roots subjected to NaCl salinity stress. Acta Physiol. Plant 24: 145-148.
  • Kushizaki M (1968). An extraction procedure of plant materials for the rapiddetermination of Mn, Cu, Zn, and Mg by the atomic absorption analysis. J. Sci. Soil Manure Japan 39: 489-490.
  • Lauchli A (1984). Salt exclusion: an adaptation of legume crops and pastures under saline conditions. In: Staples RC, Toeniessen GH. (eds) Salinity tolerance in plants: strategies for crop improvement. New York: John Wiley and Sons. PP. 171-187.
  • Lee DH, Kim YS, Lee CB (2001). The inductive responses of antioxidant enzymes by salt stress in rice (Oryza sativa L.). Journal of Plant Physiology 158: 737-745.
  • Lee JD, Shannon JG, Vuong TD, Nguyen HT (2009). Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. J Heredity 100: 798-801.
  • Letey J (1993). Relationship salinity and efficient water use. Irrig. Sci. 14:75-84.
  • Lutts S, Guerrier G (1995). Peroxidation activities of two rice cultivars differing in salinity tolerance as affected by proline and NaCl. Biol. Plant 37: 577-586.
  • Mahmood A, Latif T, Khan MA (2009). Effect of salinity on growth, yield and yield components in basmati rice germplasm. Pakistan J. Bot. 41: 3035-3045.
  • Makki YM, Tahir OA, Asif MI (1987). Effect of drainage water on seed germination and early seedling growth of five field crop species. Biological waste 21: 133-137
  • Mansour MMF, Salama KHA, Ali FZM, Hadid AFA (2005). Cell and plant responses to NaCl in Zeamays L. cultivars differing in salt tolerance. Gen. Appl. Plant Physiol. 31(1-2): 29-41.
  • Maziah M, Abdul Rahman Z, Mohd H, Shamsuddin SZ, Subramaniam S (2009). Responses of banana plantlets to rhizobacteria inoculation under salt stress condition, Am.-Eurasian J. Sustain. Agric. 3(3): 290-30.
  • McCue KF, Hanson AD (1990). Salt inducible betaine aldehyde dehyrogenase from sugarbeet: cDNA cloning and expression. Trends Biotechnol. 8: 358-362.
  • Morant MA, Pradier E, Tremblin G (2004). Osmotic adjustment, gas exchange and chlorophyll fluorescence of a hexaploid triticaleand its parental species under salt stress. Plantphysiology 161(1): 25-33
  • Munns R (2002) . Comparative physiology of salt and water stress. Plant cell and environment 25: 239- 250.
  • Munns R (2005). Genes and salt tolerance: bringing them together. New Phytol 167(3): 645-663.
  • Munns R, James RA (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253: 201-218.
  • Munns R, Tester M (2008) .Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651-681.
  • Naumann JC, Young DR, Anderson JE (2008). Leaf chlorophyll fluorescence, reflectance, and physiological response to freshwater and saltwater flooding in the evergreen shrub, Myrica cerifera. Environ Exp. Bot. 63: 402-409.
  • Neumann P (1997). Salinity resistance and plant growth revisited. Plant Cell Environ. 20: 1193-1198.
  • Parida AK, Das AB (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324-349.
  • Rahman M, Soomro UA, Zahoor-ul-Haq M, Gul S (2008). Effects of NaCl salinity on wheat (Triticum aestivum L.) cultivars. World Journal of Agricultural Sciences 4 (3): 398-403.
  • Rengel Z (1992). The role of calcium in salt toxicity. Plant Cell and Enviornment 15: 625-632.
  • Robinson RG (1975). Amino acids and elemental composition of sunflower and pumpkin seeds. Agron. J. 61: 541.
  • Sadeghi H (2009). Effects of different levels of sodium chloride on yield and chemical composition in two barley cultivars, Am.-Eurasian J. Sustain. Agric. 3(3): 314-320.
  • Salisbury FB, Ross CW (1992). Mineral nutrient. In: Plant Physiology. Wadsworth Inc., California, pp. 116-135.
  • Saneoka H, Nagasaka C, Hahn DT, Yang W, Premachandra GS, Joly RJ, Rhodes D (1995). Salt
  • tolerance of glycinebetaine-deficient and- containing maize lines. Plant Physiol. 107: 631-638.
  • Schachtman DD, Munns R (1992). Sodium accumulation in leaves of Triticum species that differ in salt tolerance. Aust. J. Plant Physiol. 19: 331-40.
  • Shalhevet J (1993). Plants under salt and water stress. In: Fowden L, Mansfield T, Stoddart J (ed) Plant Adaptation to Environmental Stress, Chapman and Hall, London, Glasgow, New York, Tokyo, Melbourne, Madras, pp. 133-154
  • Shi G, Jing J, Shi G, Jing J (1997). Mitigative effect of external Ca2+ on the inhibition of hypocotyl elongation in mungbean seedling under salt stress. Plant Physiol. Communication. 33: 24-27.
  • Siddique S, Kumar S (1985). Effect of salinisation and desalinisation of growth and development of pea (Pisum sativum I). Indian J. Plant Physiol. 28: 151-156.
  • Singh AK, Dubey RS (1995). Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedling induced by NaCl. Photosynthetica 31: 489-499.
  • Singh AK, Prakash V, Sastry EVD (2000). Variation in seedling growth parameters in wheat under normal and saline environments. Indian J. Agri. Res. 34: 185-187.
  • Singh SP, Singh BB, Singh MR, Singh M (1994). Effect of kinetin on chlorophyll, nitrogen and proline in mugbean (Vigna radiata) under saline conditions. Indian J. Plant Physiol. 37: 37-39.
  • Singleton PW, Bohlool B (1984) . Effect of salinity on nodule formation by soybean. Plant Physiology 74: 72-76.
  • Sreenivasulu N, Grimm B, Wobus U (2002). Differential respons of antioxidantcompounds to salinity stress in salt tolerant andsalt sensitive seedling of foxital millet (setariaitalica). Physiological Plantarum 109: 435-442.
  • Thalooth A T, Tawfik M M, Mohamed Mogda H (2006). A comparative study on the effect of foliar application of zinc, potassium and magnesium on growth under water stress conditions. World J. Agric. Sci. 2: 37-46.
  • Tramontano WA, Jouve D (1997). Trigonelline accumulation in salt stressedlegumes and the role of other osmoregulators ascell cycle control agents. Photochemistry 44: 1037-1040.
  • Tu JC (1981). Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Can. J. Plant Sci. 61: 231 - 239.
  • Umezawa T, Shimizu K, Kato M (2004). Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiology Plantarum 110:59-63.
  • Wilson C, Lesch SM, Grieve CM (2000). Growth stage modulates salinity tolerance of New Zealand Spinach (Tetragoniatetragonoides, Pall) and Red Orach (Atriplexhortensis L.). Ann. Bot. 85: 501-509.
  • Yeo AR, Flowers TJ (1982). Accumulation and localization of sodium ions within the shoot of rice (Oryza sativa L.) varieties differing in salinity resistance. Physiologia Plantarum 56: 343-348.
  • Yeo AR, Flowers TJ (1983). Varietal differences in the toxicity of sodium ions in rice leaves. Physiologia Plantarum 59: 189-195.
  • Yousef AN, Sprent JI (1983). Effect of NaCl on growth, nitrogen incroporation and chemical composition of inoculated and NH4NO3 fertilized Vicia faba L. plants. J. Exp. Bot. 143: 941- 950.
  • Zahran HH, Sprent JI (1986). Effects of sodium chloride and polyethylene glycol on roothair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167: 303-309.
  • Zhang C, Chu H, Chen G, Shi D, Zuo M, Wang J, Lu C, Wang P, Chen L (2007). Photosynthetic and biochemical activities in flag leaves of a newly developed superhighyield hybrid rice (Oryza sativa) and its parents during the reproductive stage. J. Plant Res. 120: 209-217.
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-7576
  • Başlangıç: 1991
  • Yayıncı: Yüzüncü Yıl Üniversitesi Ziraat Fakültesi
Sayıdaki Diğer Makaleler

Türkiye'de Tarım Üretimindeki Değişim Dinamiklerinin Buğday Üretimindeki Mekânsal Yansımaları

Kenan GÖÇER

Karyosystematic Study on Some Almond and Peach Species Grown in Iran

Şefik TUFENKCİ, Solmaz NAJAFİ, Mehdi GHİASİ

Farklı Depo Koşullarında Muhafaza Edilen Kütdiken Limon (Citrus lemon L.) Çeşidinde Bazı Kalite Kriterlerinin Dönemsel Değişimi

İhsan CANAN, Tayfun AĞAR, Muttalip GÜNDOĞDU

Türkiye’de Tescil Edilmiş Bazı Makarnalık Buğday (Triticum durum L.) Çeşitlerinin Mardin - Kızıltepe Koşullarında Verim ve Kalite Özelliklerinin Belirlenmesi

Yusuf DOĞAN, Mehmet CETİZ

Sürdürülebilir Toprak İşleme Yöntemlerinin Belirlenmesinde Toprak Kalitesi Değerlendirmelerinin Önemi

Mustafa BAYRAM, Hikmet GÜNAL, Engin ÖZGÖZ

Comparative Physiological Study of Soybean (Glycine max L.) Cultivars Under Salt Stress

Celaleddin BARUTÇULAR, Abd Elhamid OMAR, Ayman EL SABAGH, Hirofumi SANEOKA

İran’ın Kurak Soğuk Bölgesi'nde Termal Kızılötesi Görüntüleri Kullanılarak Koruyucu ve Geleneksel Toprak İşleme Sistemlerinin Değerlendirilmesi

İraj ESKANDARİ, Hosain NAVİD, Foad MORADİ

Türkiye’de Tarım üretimindeki değişim dinamiklerinin buğday üretimindeki mekânsal yansımaları

Kenan GÖÇER

The Prediction of Saint John's Wort Leaves' Chlorophyll Concentration Index using Image Processing with Artificial Neural Network

Erdem Emin MARAŞ, Mehmet Serhat ODABAS, Sreekala BAJWA, Chiwan LEE

Mardin-Kızıltepe Ekolojik Koşullarında Ekim Zamanı Uygulamalarının Bazı Soya Fasulyesi (Glycine max L.) Çeşitlerinde Verim ve Verim Öğeleri Üzerine Etkisi

Yusuf DOĞAN, Özge KOYUTÜRK, Hüsnü AKTAŞ