Çeşitli Kültür Bitkilerinden İzole Edilen Endofitik Bakterilerin Karakterizasyonu ve Bitki Patojeni Bakterilere Karşı Antagonistik Etkilerinin Belirlenmesi

Bu çalışmanın amacı çeşitli kültür bitkilerinden izole edilen endofitik bakterilerin (EB) karakterizasyonunu yapmak ve bazı bitki patojeni bakterilere karşı antagonistik etkiye sahip olanlarını belirlemektir. Bu amaçla, Van ili ve civarında yaygın olarak yetiştirilen bazı kültür bitkilerinden fide ve vejetatif dönemde alınan örneklerin yoğun yüzey sterilizasyonuna tabi tutulan kök, gövde, sürgün ve yaprak dokularından 191 endofitik bakteri (EB) izole edilmiştir. Elde edilen bu izolatların PGPR markörlerinden olan; azot fiksasyonu kabiliyeti, fosfatı çözündürme kabiliyeti, aminosiklopropan-1-karboksilat deaminaz (ACC-d) üretimi, indol-3-asetik asit (IAA) üretimi ve siderofor üretimi açısından in-vitro karakterizasyonları yapılmıştır. İzolatların %58.9’unun gram (-), %41.1’inin gram (+) olduğu tespit edilmiştir. V33K1, V35Y1, V34G1, V17G2, V30Y3, V38K1, V17K1 ve V36Y2 kodlu EB izolatlarının azot fiksasyonu dışında diğer tüm kategorilerde aktivite gösterdiği tespit edilmiştir. 25 izolat 3 farklı kategoride, 59 izolat 2 farklı kategoride, 67 izolat sadece 1 kategoride aktivite gösterirken, 21 izolat hiçbir kategoride etkinlik gösterememiştir. Ayrıca V30Y3 ve V30G2 kodlu izolatların bitki patojeni 7 farklı bakteri izolatına karşı antagonistik etkiye sahip oldukları belirlenmiştir. Tartılı derecelendirme puanlarına ve antagonistik etkilerine göre seçilen izolatların 16s rDNA dizi analiz sonuçları ile V40K2’nin Bacillus velezensis (MN186863), V30Y3’ün Bacillus megaterium (MN187955), V30G2’nin Pseudomonas caspiana (MN128080), V31Y4’nin Pantoea sp. (MT249279) ve V33K2’nin Bacillus sp. (MT249109) olduğu belirlenmiştir.

Characterization of Endophytic Bacteria Isolated from Various Cultivated Plants and Determination of their Antagonistic Effects on Plant Pathogenic Bacteria

This study aims to characterize endophytic bacteria (EB) isolated from various cultivated plants and to identify isolates that have an antagonistic effect against some plant pathogenic bacteria. For this purpose, 191 endophyte bacteria (EB) were isolated from root, stem, shoot, and leaf tissues, which were subjected to intensive surface sterilization of samples taken from seedling and the vegetative period from some cultivated plants widely grown in Van province and its vicinity. In-vitro characterizations of these isolates were made in terms of nitrogen fixation ability, phosphate solubility ability, aminocyclopropane-1-carboxylate deaminase (ACC-d) production ability, indole-3-acetic acid (IAA) production ability and siderophore production ability which are PGPR markers. It was determined that 58.9% of the isolates were gram (-), and 41.1% were gram (+). It was revealed that EB isolates with codes V33K1, V35Y1, V34G1, V17G2, V30Y3, V38K1, V17K1, and V36Y2 showed activity in all other categories besides nitrogen fixation. Twenty-five isolates were active in 3 different categories, 59 isolates were in 2 different categories, and 67 isolates were active in only one category. In contrast, 21 isolates were not active in any category. It was also determined that isolate V30Y3 and V30G2 had an antagonistic effect against seven different plant pathogenic bacterial isolates. The 16s rDNA sequence analysis of the isolates selected according to weighted grading scores and antagonistic effects identified the isolates with codes V40K2, V30Y3, V30G2, V31Y4, V33K2 as Bacillus velezensis (MN186863), Bacillus megaterium (MN187955), Pseudomonas caspiana (MN128080), Pantoea sp. (MT249279) and Bacillus sp. (MT249109), respectively.

___

  • Ahmad, F., Ahmad, I., and Khan, M. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163, 173–181. doi: 10.1016/j.micres.2006.04.001
  • Akbari, G. A., Arab, S. M., Alikhani, H. A., Allakdadi, I., Arzanesh, M. H. (2007). Isolation and selection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. World Journal of Agricultural Sciences, 3(4), 523-529.
  • Akköprü A, Özaktan H. (2018). Identification of rhizobacteria that increase yield and plant tolerance against angular leaf spot disease in cucumber. Plant Protection Science, 54 (2): 67–73.
  • Akköprü A. (2012): Hıyar Bakteriyel Köşeli Yaprak Leke Hastalığının (Pseudomonas syringae pv. lachrymans) Bazı Kök Bakterileriyle Biyolojik Savaşımı Üzerinde Araştırmalar. (PhD). Ege Üniv. Fen Bilimleri Enst. İzmir, Türkiye
  • Andrade, L. F., de Souza, G. L. O. D., Nietsche, S., Xavier, A. A., Costa, M. R., Cardoso, A. M. S., Pereira, M.C.T. & Pereira, D. F. G. S. (2014). Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. Journal of Microbiology, 52(1), 27-34.
  • Antoun, H. and Prévost, D. (2006). Ecology Of Plant Gowth Promoting. IN: Z. A. Siddiqui. (Eds) PGPR: Biocontrol and Biofertilization. (pp 1-39). Netherlands: Springer.
  • Ashrafuzzaman, M., Hossen, F. A., Ismail, M. R., Hoque, A., Islam, M. Z., Shahidullah, S. M., Meon, S. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8(7): 1247-1252.
  • Azevedo, J. L., Maccheroni Jr, W., Pereira, J. O., de Araújo, W. L. (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 3(1): 15-16.
  • Babier, Y. (2019). Van Gölü Havzasından İzole Edilen Endofit Bakterilerin Karakterizasyonu ve In Vitro Koşullarda Bazı Bitki Patojeni Bakterilere Karşı Antagonistik Etkilerinin Belirlenmesi. (YL), Van YYÜ, Fen bilimleri Ens. Van, Türkiye.
  • Baker, G.C., Smith, J.J. Cowan, D.A. (2003). Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods 55. 541- 555
  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE,Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV. (2001). Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol. 47(7):642-52.
  • Burd G I, Dixon D G., and, Glick B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3): 237-245, https://doi.org/10.1139/w99-143
  • Calvo, P., Ormeño-Orrillo, E., Martínez-Romero, E., Zúñiga, D. (2010). Characterization of Bacillus isolates of potato rhizosphere from andean soils of Peru and their potential PGPR characteristics. Brazilian Journal of Microbiology, 41(4): 899-906.
  • Chakraborty, U., Chakraborty, B., Basnet, M. (2006). Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. Journal of Basic Microbiology, 46(3): 186-195.
  • Crowley D. (2000). Function of Siderophores in the Plant Rhizosphere. In: Willig S, Varanin Zi, Nannipieri P.(ed) The Rhizosphere Biochemistry and Organic Substance at the Soil-Plant Interface. CRC Press. P440. https://doi.org/10.1201/9780849384974
  • de Souza, J. T., de Boer, M., de Waard, P., van Beek, T. A., and Raaijmakers, J. M. (2003). Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl. Environ. Microbiol. 69, 7161–7172.
  • Döbereiner, J., Day, J. M., Dart, P. J., (1972). Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-Azotobacter paspali association. Microbiology, 71(1): 103-116.
  • Etesami H., Alikhani H.A., Mirseyed Hosseini H. (2015b) Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase:Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. In: Maheshwari D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. (pp.183–258).Springer, Cham
  • Gao, Z., Zhang, B., Liu, H., Han, J., Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105: 27-39.
  • Glick B R (2014). Bacteria with ACC deaminase can promote plant growth and help tofeed the world. Microbiological Research 169, 30– 39.
  • Glick, B.R., 2015. Biocontrol mechanisms. In: Glick, B.R. (Eds) Beneficial plant-bacterial interactions. (pp. 123–157). Springer, New York,
  • Gupta S and Pandey S (2019) ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Front. Microbiol. 10:1506. doi: 10.3389/fmicb.2019.01506
  • Gül A., Özaktan H., Kıdoğlu F., Tüzel Y. (2013): Rhizobacteria promoted yield of cucumber plants grown in perlite under Fusarium wilt stress. Scientia Horticulturae, 153, 22–25.
  • Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10): 895-914.
  • Hardoim, P. R. (2011). Bacterial Endophytes of Rice: Their Diversity, Characteristics and Perspectives (PhD). University of Groningen, Mathematics and Natural Sciences, Netherlands.
  • Hardoim, P. R., van Overbeek, L. S., van Elsas, J. D., 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16 (10): 463-471.
  • Holečková Z, Kulhánek M, Balík J. (2017). Use of Active Microrganisms in Crop Production–A Review. J Food Process Technol 8: 696. doi: 10.4172/2157-7110.1000696
  • Israr D, Mustafa G, Khan KS, Shahzad M, Ahmad N, et al. (2016) Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiology and Biochemistry, 108, 304-312
  • Khalid A., Arshad M., Zahir Z.A. (2004): Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, 96, 473–480.
  • Kumar, P, Thakur, S,Dhingra, GK,Singh, A,Pal, MK,Harshvardhan, K,Dubey, RC,Maheshwari, D.K. (2018). Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatalysis And Agricultural Biotechnology. 15. 264-269
  • Loaces, I., Ferrando, L. & Fernández Scavino, A. (2011). Dynamics, Diversity and Function of Endophytic Siderophore-Producing Bacteria in Rice. Microb Ecol 61, 606–618. https://doi.org/10.1007/s00248-010-9780-9
  • Louden, B. C., Haarmann, D., Lynne, A. M. (2011). Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education, 12(1), 51-53.
  • Majeed A, Abbasi MK, Hameed S, Imran A and Rahim N. (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 6,198. doi: 10.3389/fmicb.2015.00198
  • Mercado-Blanco, J and Lugtenberg B. J.J. (2014). Biotechnological Applications of Bacterial Endophytes. Current Biotechnology, 3, 60-75
  • Mohamad, O., Li, L., Ma, J. B., Hatab, S., Xu, L., Guo, J. W., Rasulov, B. A., Liu, Y. H., Hedlund, B. P., & Li, W. J. (2018). Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations From Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeus Against Verticillium dahliae. Frontiers in microbiology, 9, 924. https://doi.org/10.3389/fmicb.2018.00924
  • Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1): 265-270.
  • Newton, C.R. (1995). PCR: Essential data. John Wiley & Sons, Chichester, UK.
  • Onofre-Lemus,J., Hernández-Lucas, I., Girard, L., Caballero-Mellado, J. (2009). ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase Activity, a Widespread Trait in Burkholderia Species, and Its Growth-Promoting Effect on Tomato Plants. Applied and Environmental Microbiology, 75, 20, 6581- 590; DOI: 10.1128/AEM.01240-09
  • Özaktan, H., Gül, A., Çakir, B., Yolageldi, L., Akköprü, A. (2015). Bakteriyel Endofitlerin Hıyar Yetiştiriciliğinde Biyogübre ve Biyopestisit Olarak Kullanılma Olanakları. Tubitak-COST 111O505 no’lu Proje kesin raporu.
  • Patten, C.L. and Glick, B.R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system, Appl. Environ. Microbiol., 68, 3795-3801.
  • Penrose, D. M., Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia Plantarum, 118(1), 10-15
  • Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C.M., Bakker P.A.H.M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375
  • Poonguzhali,S.,Madhaiyan,M.,andSa,T.M.(2008). Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and theire ffect on growth and phosphorus utilization of plants. J. Microbiol.Biotechnol. 18, 773–777
  • Priyanka, Agrawal, T., Kotasthane, A.S., Kosharia, A, Kushwah R., Zaidi NW, Singh U. S. (2017). Crop specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas. 3 Biotech 7, 27-38. https://doi.org/10.1007/s13205-017-0602-3
  • Putri, A. Z., Sasongko, D., Susilowati, D. N. (2015). Screening of rhizosphere bacteria from rice fields in the coastal area as ACC-deaminase and auxin producer. International Journal on Advanced Science, 5(1): 27-30.
  • Rashid, M., Khan, A., Hossain, M. T., Chung, Y. R., (2017). Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in arabidopsis. Frontiers in Plant Science, 8, 211.
  • Rosenblueth M, Martínez-Romero E (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19, 8, 827–837.
  • Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., Dowling, D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters, 278(1), 1-9.
  • Saharan B, Nehra V (2011). Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 2011, 1-30.
  • Schaad, N. W., Jones, J. B., Chun, W. (2001). Laboratory Guide for the Identification of Plant Pathogenic Bacteria. American Phytopathological Society, USA.
  • Schwyn, B., Neilands, J. B., 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47-56.
  • Spaepen, S., Vanderleyden, J., Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4): 425-448.
  • Surette, M. A., Sturz, A. V., Lada, R. R., Nowak, J. (2003). Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant and Soil, 253 (2), 381-390.
  • Turhan, Ş., 2005. Tarımda sürdürülebilirlik ve organik tarım. Tarım Ekonomisi Dergisi, 11(1-2), 13-24.
  • Van Loon L.C. (2007), Plant responses to plant gowthpromoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.
  • Verma, S.C. Ladha J.K., Tripathi, A.K. (2001). Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91, 127–141.
  • Yıldız, R. Ç., Aysan, Y. (2014). Domates bakteriyel solgunluk hastalığının bitki büyüme düzenleyici kökbakterileri ile biyolojik mücadelesi. Türkiye Biyolojik Mücadele Dergisi, 5(1), 9-22.