Yüksek Aktiviteye Sahip CNT Destekli Pd-Zn Katalizörünün Formik Asit Elektrooksitlenme Aktivitesinin İncelenmesi

Dünyada artan enerji ihtiyacına ek olarak petrol rezervlerinin zamanla azalması bilim dünyasını alternatif enerji kaynakları bulmaya ve bu alanda çalışmalar yapmaya itmiştir. Yakıt hücreleri de birçok alanda kullanıma elverişli olduğundan, araştırmacılar arasında çok popülerdir. Bu çalışmada karbon nanotüp destekli Pd (Pd/CNT) ve PdZn (PdZn/CNT) katalizörleri NaBH4 indirgeme yöntemiyle sentezlenmiştir ve bu katalizörlerin formik asit elektrooksidasyonu için performansları ve optimum operasyon koşulları araştırılmıştır. Sentezlenen katalizörler X-ışını kırınım yöntemi (XRD) ve Endüktif olarak eşleşmiş plazma-kütle spektrometresi (ICP‐MS) ile karakterize edilmiştir. Katalizörlerin performansı ise dönüşümlü voltametri (CV), kronoampermetri (CA) ve elektrokimyasal empedans spektroskobisi (EIS) yöntemleri kullanılarak ölçülmüştür. PdZn/CNT katalizörü 402.1 mA/mg Pd ile Pd/CNT’ye göre çok daha yüksek kütlesel aktivite göstermiştir.

___

  • Ahmed, M., Attard, G. A., Wright, E. ,Sharman, J., 2013. Methanol and Formic Acid Electrooxidation on Nafion Modified Pd/Pt{111}: The Role of Anion Specific Adsorption in Electrocatalytic Activity. Catalysis Today 202: 128-134.Fathirad, F., Afzali, D. ,Mostafavi, A., 2016. Bimetallic Pd–Zn Nanoalloys Supported on Vulcan Xc-72r Carbon as Anode Catalysts for Oxidation Process in Formic Acid Fuel Cell. International Journal of Hydrogen Energy 41: 13220-13226.Jin, C., Wan, C. ,Dong, R., 2018. High Activity of Pd Deposited on Ag/C for Allyl Alcohol Oxidation. Electrochimica Acta 262: 319-325.KIVRAK, H. ,Berdan, U., 2017. Doğrudan Metanol Yakıt Pili Karbon Destekli Pt-Ru Anot Katalizörlerinin Sıralı İndirgeme Yöntemi Ile Sentezi Ve Geliştirilmesi. Journal of the Institute of Natural & Applied Sciences 22: 21-32.Liang, L., Vladimir, F., Ge, J., Liu, C. ,Xing, W., 2019. Highly Active Ptau Alloy Surface Towards Selective Formic Acid Electrooxidation. Journal of Energy Chemistry 37: 157-162.Liao, M., Hu, Q., Zheng, J., Li, Y., Zhou, H., Zhong, C.-J. ,Chen, B. H., 2013. Pd Decorated Fe/C Nanocatalyst for Formic Acid Electrooxidation. Electrochimica Acta 111: 504-509.Ulas, B., Caglar, A. ,Kivrak, H., Determination of Optimum Pd:Ni Ratio for Pdxni100-X/Cnts Formic Acid Electrooxidation Catalysts Synthesized Via Sodium Borohydride Reduction Method. International Journal of Energy Research 0: Ulas, B., Caglar, A., Sahin, O. ,Kivrak, H., 2018. Composition Dependent Activity of Pdagni Alloy Catalysts for Formic Acid Electrooxidation. Journal of Colloid and Interface Science 532: 47-57.Wang, X., Tang, Y., Gao, Y. ,Lu, T., 2008. Carbon-Supported Pd–Ir Catalyst as Anodic Catalyst in Direct Formic Acid Fuel Cell. Journal of Power Sources 175: 784-788.Wen, W., Li, C., Li, W. ,Tian, Y., 2013. Carbon-Supported Pd–Cr Electrocatalysts for the Electrooxidation of Formic Acid That Demonstrate High Activity and Stability. Electrochimica Acta 109: 201-206.Xu, H., Yan, B., Zhang, K., Wang, J., Li, S., Wang, C., Du, Y., Yang, P., Jiang, S. ,Song, S., 2017. N-Doped Graphene-Supported Binary Pdbi Networks for Formic Acid Oxidation. Applied Surface Science 416: 191-199.Yang, F., Zhang, B., Dong, S., Wang, C., Feng, A., Fan, X. ,Li, Y., 2019. Reduced Graphene Oxide Supported Pd-Cu-Co Trimetallic Catalyst: Synthesis, Characterization and Methanol Electrooxidation Properties. Journal of Energy Chemistry 29: 72-78.Yin, M., Li, Q., Jensen, J. O., Huang, Y., Cleemann, L. N., Bjerrum, N. J. ,Xing, W., 2012. Tungsten Carbide Promoted Pd and Pd–Co Electrocatalysts for Formic Acid Electrooxidation. Journal of Power Sources 219: 106-111.Zhang, G., Wang, Y., Wang, X., Chen, Y., Zhou, Y., Tang, Y., Lu, L., Bao, J. ,Lu, T., 2011. Preparation of Pd–Au/C Catalysts with Different Alloying Degree and Their Electrocatalytic Performance for Formic Acid Oxidation. Applied Catalysis B: Environmental 102: 614-619.