CNT Destekli Pd, Sn, Ir Tekmetalli Katalizörlerinin Metanol, Etanol, Etilen Glikol Elektrooksitlenme Aktivitesinin Araştırılması

Son zamanlarda nüfusun artması ve beraberinde sanayinin gelişmesinden dolayı enerji kaynaklarında hızlı bir şekilde azalma baş göstermiştir. Enerji kaynaklarının azalması bilim insanlarını yeni enerji kaynakları arayışı içine yönlendirmiştir. Yakıt pilleri yaygın bir şekilde enerji teknolojileri ile karşılaştırıldığında birçok avantaja sahiptir. Yakıt pillerinin verimi diğer konvansiyonel enerji sistemlerinden yüksektir. Yapılan bu çalışmada CNT destekli saf Pd, Sn ve Ir katalizörleri NaBH4 indirgeme yöntemi ile hazırlanmıştır. Bu katalizörlerin ICP-MS yöntemi ile karakterizasyonu yapılmıştır. Pd, Sn, Ir katalizörlerinin etanol, metanol, etilen glikol elektrooksitlenmesi döngüsel voltametre (CV), kronoamperometre (CA), elektrokimyasal empedans spektrokopisi (EIS) ölçümleri yapılmıştır.

Investigation of Methanol, Ethanol, Ethylene Glycol Electrooxidation Activity of CNT Supported Pd, Sn, Ir Catalysts

Recently, the energy need has been increased due to the increase in population and the development of industry. In order to meet the energy needs of the world, scientists have led the search for new sources of energy. Fuel cells are clean, efficient and promising sources of energy for the future. The efficiency of fuel cells is higher compared to other conventional energy systems. In this study, multi-walled carbon nanotube (CNT) supported Pd, Sn, and Ir catalysts were prepared by NaBH4 reduction method. These catalysts were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) method. Pd/CNT, Sn/CNT, and Ir/CNT catalysts were measured via cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) for ethanol (C2H5OH), methanol (CH3OH), and ethylene glycol (C2H6O2) electrooxidation.

___

  • Abdullah, S., Kamarudin, S. K., Hasran, U. A., Masdar, M., & Daud, W. R. W. (2015). Development of a conceptual design model of a direct ethanol fuel cell (DEFC). International Journal of Hydrogen Energy, 40(35), 11943-11948. Almeida, G. R., López-Suárez, F. E., Silva, L. S., Pereira, G. F., Bueno-López, A., Eguiluz, K. I., & Salazar-Banda, G. R. (2019). Methanol Electro-Oxidation on Carbon-Supported PtRu Nanowires. Journal of Nanoscience and Nanotechnology, 19(2), 795-802. Antolini, E., & Gonzalez, E. (2010). The electro-oxidation of carbon monoxide, hydrogen/carbon monoxide and methanol in acid medium on Pt-Sn catalysts for low-temperature fuel cells: a comparative review of the effect of Pt-Sn structural characteristics. Electrochimica Acta, 56(1), 1-14. Baronia, R., Goel, J., Kataria, V., Basu, S., & Singhal, S. K. (2019). Electro-oxidation of ethylene glycol on PtCo metal synergy for direct ethylene glycol fuel cells: Reduced graphene oxide imparting a notable surface of action. International Journal of Hydrogen Energy. Caglar, A., & Kivrak, H. (2019). Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment. International Journal of Hydrogen Energy. Chandra, S., Lal, S., Janardhanan, V. M., Sahu, K. C., & Deepa, M. (2018). Ethanol based fuel cell on paper support. Journal of Power Sources, 396, 725-733. Çağlar, A., Aldemir, A., & Kivrak, H. (2018). Alcohol electrooxidation study on carbon nanotube supported monometallic, Pt, Bi, and Ru catalysts. Fullerenes, Nanotubes and Carbon Nanostructures, 26(12), 863-870. de Souza, L. L., Neto, A. O., & Christina, A. d. O. (2017). Direct Oxidation of Ethylene Glycol on PtSn/C for Application in Alkaline Fuel Cell. Int J Electrochem Sci, 12, 11855-11874. Geraldes, A. N., Da Silva, D. F., Pino, E. S., Da Silva, J. C. M., De Souza, R. F. B., Hammer, P., . . . Dos Santos, M. C. (2013). Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation. Electrochimica Acta, 111, 455-465. Karuppasamy, L., Anandan, S., Chen, C.-Y., & Wu, J. J. (2017). Sonochemical synthesis of PdAg/RGO nanocomposite as an efficient electrocatalyst for both ethanol oxidation and oxygen reduction reaction with high CO tolerance. Electrocatalysis, 8(5), 430-441. Kivrak, H., & Ulas, B. (2017). Doğrudan Metanol Yakıt Pili Karbon Destekli Pt-Ru Anot Katalizörlerinin Sıralı İndirgeme Yöntemi ile Sentezi ve Geliştirilmesi. J Inst Nat Appl Sci, 22, 21-32. KIVRAK, H. D. (2015). The effect of temperature and concentration for methanol electrooxidation on Pt-Ru catalyst synthesized by microwave assisted route. Turkish Journal of Chemistry, 39(3), 563-575. Mavrokefalos, C. K., Hasan, M., Rohan, J. F., & Foord, J. S. (2018). Enhanced Mass Activity and Stability of Bimetallic Pd‐Ni Nanoparticles on Boron‐Doped Diamond for Direct Ethanol Fuel Cell Applications. ChemElectroChem, 5(3), 455-463. Pan, Z., Huang, B., & An, L. (2018). Performance of a hybrid direct ethylene glycol fuel cell. International Journal of Energy Research. Serov, A., & Kwak, C. (2010). Recent achievements in direct ethylene glycol fuel cells (DEGFC). Applied Catalysis B: Environmental, 97(1-2), 1-12. Sheng, G., Chen, J., Ye, H., Hu, Z., Fu, X.-Z., Sun, R., . . . Wong, C.-P. (2018). Hollow PdCo alloy nanospheres with mesoporous shells as high-performance catalysts for methanol oxidation. Journal of colloid and interface science, 522, 264-271. Shrivastava, N., & Harris, T. (2017). Direct Methanol Fuel Cells. Yang, Y., Jin, L., Liu, B., Kerns, P., & He, J. (2018). Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation. Electrochimica Acta, 269, 441-451. Zakaria, Z., Kamarudin, S. K., & Timmiati, S. (2016). Membranes for direct ethanol fuel cells: an overview. Applied Energy, 163, 334-342.