Doğrudan Metanol Yakıt Pili Anot Katalizörlerinin Sentezi ve Geliştirilmesi

Günümüzde doğrudan beslemeli yakıt pilleri kolay taşınabilirlik, yakıt ikmali ve yüksek enerji dönüşümü gibi avantajları yüzünden en çok çalışılan konular arasında yer almaktadır. Pt küçük organik moleküllerin sentezinde iyi bir katalizördür fakat Pt yakıt pillerinin çalıştığı düşük sıcaklıklarda oluşan CO gazı ile bu koşullarda zehirlenir. Doğrudan beslemeli metanol yakıt pilleriyle yapılan çalışmalarda Pt-Ru katalizörünün iyi bir metanol yakıt pili katalizörü olduğu rapor edilmiştir fakat Ru eklendiğinde katalizörün aktivesinin neden ve nasıl arttığı halen cevaplanamamıştır. Bu soruların yanıtlanabilmesi için yeni nesil aktif katalizörlerin hazırlanması, zehirlenme gibi mevcut problemlerin aşılmasında büyük önem taşımaktadır. Bu çalışma, metanol yakıt pili anot katalizörlerinin aktivitelerinin araştırılması için yapılmıştır. Katalizörler sıralı indirgenme yöntemi hazırlanmış ve katalizör hazırlama yönteminin metanol elektrooksitlenme aktivitesine etkisi araştırılmıştır. Sonuçlar, Pt@Ru/C ve Ru@Pt/C katalizörler üzerinde yapılan ölçümlerde Pt@Ru/C katalizörlerin daha yüksek aktivite gösterdiği gözlemlenmiştir. 

Sequential Reduction Synthesis and Development of Carbon Supported Pt-Ru Direct Methanol Fuel Cell Anode Catalysts

Nowadays, direct fueled fuel cells are among the most studied subjects due to their advantages such as easy portability, refueling and high energy conversion. Pt is a good catalyst for the synthesis of small organic molecules, but Pt is poisoned by the CO gas generated at the low temperatures that the fuel cells operate. It has been reported in the studies about direct methanol feed fuel cell that Pt-Ru catalyst is a good methanol fuel cell catalyst, but when Ru is added, why and how the catalytic activity is increased is still unanswered. In order to answer these questions, preparation of new generation active catalysts is crucial for overcoming existing problems such as poisoning. This work was done to investigate the activities of methanol fuel cell anode catalysts. The catalyts were prepared via sequential reduction method and the effect of catalyst preparation method on methanol electrooxidation activity was investigated. In the measurements performed on carbon supported Rushell-Ptcore (Pt@Ru/C) and Ptshell-Rucore (Ru@Pt/C) catalysts, the results show Ru@Pt/C catalyst having higher activity.

___

  • [1] Gasteiger, H. A., Markovic, N., Ross, P.N., Cairns, E. J. (1994). “Temperature-Dependent Methanol Electrooxidatıon On Well-Characterized Pt-Ru Alloys”, Journal of the Electrochemical Society, 141 (7): 1795-1803.
  • [2] Liu, H. S., Song, C. J., Zhang, L., Zhang, J. J., Wang, H. J., Wilkinson, D. P. (2006). “A Review Of Anode Catalysis In The Direct Methanol Fuel Cell”, Journal of Power Sources, 155 (2): 95-110.
  • [3] Lamy, C., Leger, J. M. (1997).“In Recent Progresses In Materials For The Direct Methanol Fuel Cell”, 2nd International Symposium on New Materials for Fuel Cell and Modern Battery Systems, 477-488.
  • [4] McGrath, K. M., Prakash, G. K. S., Olah, G. A. (2004). “Direct Methanol Fuel Cells”, Journal of Industrial and Engineering Chemistry, 10 (7): 1063-1080.
  • [5] McNicol, B. D., Rand, D. A. J., Williams, K. R. (1999). “Direct Methanol-Air Fuel Cells For Road Transportation”, Journal of Power Sources, 83 (1-2): 15-31.
  • [6] Shukla, A. K., Ravikumar, M. K., Gandhi, K. S. (1996). “In Direct Methanol Fuel Cells For Vehicular Applications”, 3rd Indo-German Seminar on Modern Aspects of Electrochemistry, 117-122.
  • [7] Xu, K., Pierce, D. T., Li, A., Zhao, J. X. (2008). “Nanocatalysts In Direct Methanol Fuel Cell Applications”, Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 38 (4): 394-399.
  • [8] Liu, L., Pu, G., Viswanathan, R., Fan, Q. B., Liu, R. X., Smotkin, E. S. (1997). “In Carbon Supported And Unsupported Pt-Ru Anodes For Liquid Feed Direct Methanol Fuel Cells”, Joint International Meeting of the International-Society-of-Electrochemistry and the Electrochemical-Society, 3657-3663.
  • [9] Chu, D. Gilman, S. (1996). “Methanol Electro-Oxidation On Unsupported Pt-Ru Alloys At Different Temperatures”, Journal of the Electrochemical Society, 143 (5): 1685-1690.
  • [10] Chakraborty, D. Bischoff, H. Chorkendorff, I. Johannessen, T. (2005). “Mixed Phase Pt-Ru Catalyst For Direct Methanol Fuel Cell Anode By Flame Aerosol Synthesis”, Journal of the Electrochemical Society, 152 (12): 2357-2363.
  • [11] Arico, A. S., Creti, P., Giordano, N., Antonucci, V., Antonucci, P. L., Chuvilin, A. (1996). “Chemical And Morphological Characterization Of A Direct Methanol Fuel Cell Based On A Quaternary Pt-Ru-Sn-W/C Anode”, Journal of Applied Electrochemistry, 26 (9): 959-967.
  • [12] Arico, A. S., Creti, P., Modica, E., Monforte, G., Baglio, V., Antonucci, V. (2000). “In Investigation Of Direct Methanol Fuel Cells Based On Unsupported Pt-Ru Anode Catalysts With Different Chemical Properties”, 3rd Electrocatalysis Meeting (ECS 99), 4319-4328.
  • [13] Arico, A. S., Baglio, V., Di Blasi, A., Modica, E., Antonucci, P. L., Antonucci, V. (2003). “Analysis Of The High-Temperature Methanol Oxidation Behaviour At Carbon-Supported Pt-Ru Catalysts”, Journal of Electroanalytical Chemistry, 557: 167-176.
  • [14] Eickes, C., Brosha, E., Garzon, F., Purdy, G., Zelenay, P., Morita, T., Thompsett, D. (2002). “In Electrochemical And XRD Characterization Of Pt-Ru Blacks For DMFC Anodes”, 3rd Symposium on Proton Conducting Membrane Fuel Cells, 450-467.
  • [15] Arico, A. S., Antonucci, P. L., Modica, E., Baglio, V., Kim, H., Antonucci, V. (2002). “Effect Of Pt-Ru Alloy Composition On High-Temperature Methanol Electro-Oxidation”, Electrochimica Acta, 47 (22-23): 3723-3732.
  • [16] Arico, A. S., Creti, P., Kim, H., Mantegna, R., Giordano, N., Antonucci, V. (1996). “Analysis Of The Electrochemical Characteristics Of A Direct Methanol Fuel Cell Based On A Pt-Ru/C Anode Catalyst”, Journal of the Electrochemical Society, 143 (12): 3950-3959.
  • [17] Arico, A. S., Poltarzewski, Z., Kim, H., Morana, A., Giordano, N., Antonucci, V. (1995). “Investigation Of A Carbon-Supported Quaternary Pt-Ru-Sn-W Catalyst For Direct Methanol Fuel-Cells”, Journal of Power Sources, 55 (2): 159-166.
  • [18] Arico, A. S., Creti, P., Poltarzewski, Z., Mantegna, R., Kim, H., Giordano, N., Antonucci, V. (1997). “Characterization Of Direct Methanol Fuel Cell Components By Electron Microscopy And X-Ray Microchemical Analysis”, Materials Chemistry and Physics, 47 (2-3): 257-262.
  • [19] Bauer, A., Gyenge, E. L., Oloman, C. W. (2007). “Direct Methanol Fuel Cell With Extended Reaction Zone Anode: Ptru And Ptrumo Supported On Graphite Felt”, Journal of Power Sources, 167 (2): 281-287.
  • [20] Bensebaa, F., Farah, A. A., Wang, D. S., Bock, C., Du, X. M., Kung, J., Le Page, Y. (2005). “Microwave Synthesis Of Polymer-Embedded Pt-Ru Catalyst For Direct Methanol Fuel Cell”, Journal of Physical Chemistry B, 109 (32): 15339-15344.
  • [21] Cao, D. X., Bergens, S. H. (2004). “Pt-Ru-Adatom Nanoparticles As Anode Catalysts For Direct Methanol Fuel Cells”, Journal of Power Sources, 134 (2): 170-180.
  • [22] Chen, W. M., Sun, G. Q., Liang, Z. X., Mao, Q., Li, H. Q., Wang, G. X., Xin, Q., Chang, H., Pak, C. H., Seung, D. Y. (2006). “The Stability Of A Ptru/C Electrocatalyst At Anode Potentials In A Direct Methanol Fuel Cell”, Journal of Power Sources, 160 (2): 933-939.
  • [23] Choi, W. C., Woo, S. I. (2003). “Bimetallic Pt-Ru Nanowire Network For Anode Material In A Direct-Methanol Fuel Cell”, Journal of Power Sources, 124 (2): 420-425.
  • [24] Chu, Y. H., Shul, Y. G., Choi, W. C., Woo, S. I., Han, H. S. (2002). “In Evaluation Of The Nafion Effect On The Activity Of Pt-Ru Electrocatalysts For The Electro-Oxidation Of Methanol”, Conference on Scientific Advances in Fuel Cell Systems, 334-341.
  • [25] Cui, Z. M., Liu, C. P., Liao, J. H., Xing, W. (2008). “Highly Active Ptru Catalysts Supported On Carbon Nanotubes Prepared By Modified Impregnation Method For Methanol Electro-Oxidation”, Electrochimica Acta, 53 (27): 7807-7811.