39K ve 41K İzotoplarının 0-20 MeV Enerji Aralığında Nötron Reaksiyonları Tesir Kesiti Hesaplamaları

Force Free Helical Reactor (FFHR) tasarımı, sıvı blanket sistemine sahip füzyon reaktörlerinden biridir. Flinak (LiF-NaF-KF), FFHR‘de trityum üretimi, soğutucu ve ısı transferi için blanket olarak kullanma potansiyeline sahip eriyik tuzlardan biridir.  Yüksek sıcaklıklarda düşük buhar basıncına (900 °C de 0,5 mmHg) sahip olan Flinak’ın korozyon karakteristikleri Flibe (Li2BeF4) ‘ye benzerdir ve termal iletkenliği  dir. FFHR tasarımlarında kullanım potansiyeli, Flinak bileşenlerinin nükleer özelliklerinin belirlenmesinin önemini artırır. Bu çalışmada 39K ve 41K'in 0-20 MeV gelme enerjili nötronlarla gerçekleştireceği nükleer reaksiyonlardan (n,p) ve (n,α) reaksiyonları için tesir kesiti hesaplamaları denge ve denge öncesi modeller kullanılarak yapıldı. Hesaplamalarda denge öncesi için Full Exciton Model, Hibrid Model, Geometri Bağımlı Hibrid Model ve Kaskad Eksiton Model kullanılırken, denge modeli hesaplamalarında Weisskopf-Ewing Modeli kullanıldı ve yapılan hesaplama sonuçları EXFOR, JEFF 3.2 ve TENDL-2015'den alınan deneysel ve değerlendirilmiş tesir kesiti verileriyle karşılaştırıldı.

Calculation of Neutron Reaction Cross Sections of 39K and 41K Isotopes Between 0-20 MeV Energy Region

Design of Force Free Helical Reactor (FFHR) is one of the fusion reactor which has liquidblanket system. Flinak is one of the molten salt to use thermal transfer, coolant and production of tritiumat FFHR. Corrosion characteristic of Flinak show similar properties to Flibe. Also, Flinak has low vaporpressure at high temperature (at 900 C, 0.5 mmHg) and its thermal conductivity is k  0.92W / mK .It is very important to determine nuclear potential of Flinak components due to potential use in FFHRdesign.In this study, we calculated (n,p) and (n,α) reactions cross section calculations for 39K and 41K withneutron which has energy between 0-20 MeV using pre-equilibrium and equilibrium models. While FEM,Hybrid, Geometry Dependent Hybrid Model and Cascade Exciton Model were used for pre-equilibriumstate, Weisskopf Ewing Model was used for equilibrium model calculations. Obtained results werecompared with experimental and evaluated cross section data obtained from EXFOR, JEFF 3.2 andTENDL-2015.

___

  • Abdou, M. A., Ying, A., Morley, N., Gulec, K., Smolentsev, S., Kotschenreuther, M., ... & Nelson, B. 2001. On the exploration of innovative concepts for fusion chamber technology. Fusion Engineering and Design. 54;2:181-247.
  • Blann, M. 1971. Hybrid model for pre-equilibrium decay in nuclear reactions. Physical Review Letters. 27;6:337-340.
  • Blann, M. 1972. Importance of the nuclear density distribution on pre-equilibrium decay. Physical Review Letters. 28;12:757.
  • Blann, M. 1975. Preequilibrium Decay. Annual Review of Nuclear Science. 25;1: 123-166.
  • Block, R. C., Danon, Y., Gunsing, F., Haight, R. C. 2010. Neutron Cross Section Measurements, c.1. Handbook of Nuclear Enginering (D. G. Cacuci). ISBN 978-0-387-98150-5. Springer, US.
  • Broeders, C. H., Konobeyev, A. Y., Korovin, Y. A., Lunev, V. P., Blann, M., 2006. ALICE/ASH MANUAL.
  • Capote, R., Osorio, V., Lopez, R., Herrera, E., Piris, M. 1991. Analysis of Experimental Data on Neutron-Induced Reactions and Development of Code PCROSS for The Calculation of Differential Pre-equilibrium Emission Spectra With Modelling of Level Density Function. International Atomic Energy Agency, Vienna.
  • EXFOR, http://www.oecdnea.org/janisweb/search /exfor.
  • Evaluated Data Library, http://www.oecd-nea.org/janisweb/
  • Ferng, Y. M., Kun-Yueh Lin, and Chen-Wei Chi. 2012. CFD investigating thermal-hydraulic characteristics of FLiNaK salt as a heat exchange fluid. Applied Thermal Engineering. 37: 235-240.
  • Forsberg, C. W., Peterson, P. F., & Zhao, H. 2007. High-temperature liquid-fluoride-salt closed-Brayton-cycle solar power towers. Journal of Solar Energy Engineering. 129;2: 141-146.
  • Fukada, S., & Morisaki, A. 2006. Hydrogen permeability through a mixed molten salt of LiF, NaF and KF (Flinak) as a heat-transfer fluid. Journal of nuclear materials. 358;2:235-242.
  • Griffin, J. J. 1966. Statistical model of intermediate structure. Physical Review Letters. 17;9:478-481.
  • Gudima, K. K., Mashnik, S. G., Toneev, V. D. 1983. Cascade-exciton model of nuclear reactions. Nuclear Physics A. 401;2:329-361.
  • Kaplan, A., Çapalı, V., Özdoğan, H., Aydın, A., Tel, E., Sarpün, İ. H. 2014. (3He,xn) reaction cross-section calculations for the structural fusion material 181Ta in the energy range of 14–75 MeV. Journal of Fusion Energy. 33;5: 510-515.
  • Kondo, M., Nagasaka, T., Xu, Q., Muroga, T., Sagara, A., Noda, N., ... & Fujii, N. 2009. Corrosion characteristics of reduced activation ferritic steel, JLF-1 (8.92 Cr–2W) in molten salts Flibe and Flinak. Fusion Engineering and Design. 84;7:1081-1085.
  • LeBlanc, D. 2010. Molten salt reactors: A new beginning for an old idea. Nuclear Engineering and Design. 240;6:1644-1656.
  • Mashnik, S. G., Gudima, K. K., Sierk, A. J., Baznat, M. I., Mokhov, N. V. 2005. CEM03. 01 User Manual. Los Alamos National Laboratory.
  • Olson, L. C., Ambrosek, J. W., Sridharan, K., Anderson, M. H., & Allen, T. R. 2009. Materials corrosion in molten LiF-NaF-KF salt. Journal of Fluorine Chemistry. 130;1:67-73.
  • Ouyang, F. Y., Chang, C. H., You, B. C., Yeh, T. K., & Kai, J. J. 2013. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments. Journal of Nuclear Materials. 437;1: 201-207.
  • Sagara, A., Yamanishi, H., Imagawa, S., Muroga, T., Uda, T., Noda, T., ... & Kohyama, A. 2000. Design and development of the Flibe blanket for helical-type fusion reactor FFHR. Fusion Engineering and Design. 49:661-666.
  • Serber, R. 1947. Nuclear reactions at high energies. Physical Review. 72;11:1114.
  • Sona, C. S., Khanwale, M. A., Mathpati, C. S., Borgohain, A., & Maheshwari, N. K. 2014. Investigation of flow and heat characteristics and structure identification of FLiNaK in pipe using CFD simulations. Applied Thermal Engineering. 70;1:451-461.
  • Uğur, F. A., Tel, E., Gökçe, A. A., 2013. A study on 19F (n, α) reaction cross section. Journal of Fusion Energy. 32;3: 414-418.
  • Watanabe, K. Y., Sagara, A., Yamada, H., Sakakibara, S., Narihara, K., Tanaka, K., ... & Fujiwara, M. 2000. Helical Reactor Design Studies Based on New Confinement Scalings. Research Report NIFS-Series.
  • Williams, D. F. 2006. Assessment of candidate molten salt coolants for the NGNP/NHI Heat-Transfer Loop. ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
  • Weisskopf, V., 1937. Statistics and nuclear reactions. Physical Review. 52;4: 295.
  • Weisskopf, V. F., Ewing, D. H. 1940. On the yield of nuclear reactions with heavy elements. Physical Review. 57;6:472.
  • Yapıcı, H. 2003. Study of fissile fuel breeding concept for the force-free helical reactor. Fusion engineering and design. 65;4:599-609.