Echinococcus granulosus İnfeksiyonu Tanısında Moleküler Uygulamalar ve Yeni Yaklaşımlar

Kistik ekinokokkozis (KE), tüm dünyaya yayılan, büyük bir hastalık yüküne neden olan ve ara konaklarda uzun süreli hidatik kist büyümesi ile karakterize, kronik zoonotik bir hastalıktır. KE etkeni olan Echinococcus granulo-sus, çoğunlukla karaciğerde (%65-70) ve akciğerlerde (%20-25) ve diğer organlarda (%2 böbrek, %2 dalak ve %2'den az beyin vb.) hidatik kistlere neden olmaktadır. KE tanısı klinik bulgulara, görüntüleme yöntemlerine, serolojik ve moleküler tekniklere dayanır. Hasta serumundaki Echinococcus DNA'sının belirlenmesi tanıda inva-ziv olmayan uygulanabilir bir yöntem olabilir. Şimdiye kadar, farklı E. granulosus genotipleri, insanlardan ve diğer ara konaklardan moleküler teknikler kullanılarak tanımlanmıştır. Ama şimdi moleküler yaklaşımlar sa-dece DNA seviyeleriyle değil, aynı zamanda RNA seviyeleriyle de sınırlıdır. Özellikle genomik, proteomik, mikrodizi ve yeni nesil dizileme analizlerindeki yeni gelişmeler, tanı, aşılama ve kemoterapi için ek hedeflerin belirlenmesinde faydalı olacaktır. Yüksek çıktılı analiz yöntemlerinin kullanılması, E. granulosus ile konakları arasındaki etkileşim mekanizmasının temelini oluşturmaya yardımcı olabilir. Böylece, elde edilen yeni bilgiler, E. granulosus enfeksiyonunun yeni tedavi ve tanısal hedeflerini geliştirmek için kullanılabilecektir

Echinococcus granulosus İnfeksiyonu Tanısında Moleküler Uygulamalar ve Yeni Yaklaşımlar

Cystic echinococcosis (CE) is a chronic zoonotic disease which is distributed all over the world, causes a large disease burden, and characterized by prolonged growth of hydatid cysts in intermediate hosts. Echinococcus granulosus which is a CE agent and causes hydatid cysts in mostly in liver (65-70%) and lungs (20-25%) but also other organs (kidney 2%, spleen 2% and brain less than 2%, etc.). The diagnosis of CE is based on clinical fin-dings, imaging techniques, serological and molecular technics. Identification of Echinococcus DNA in patient se-rum may be an applicable non-invasive method in the diagnosis. Up to now, different genotypes of E. granulo-sus have been identified by using molecular techniques from humans and other intermediate hosts. But now, the molecular approaches are not restricted to DNA levels but also to RNA levels. Especially new developments in genomics, proteomics, microarray, and next generation sequencing analysis will be useful for the identifica-tion of additional targets for diagnosis, vaccination, and chemotherapy Using high throughput analysis met-hodologies can help to underly the mechanism of interaction between E. granulosus and its hosts. So, obtained new informations will be used to develop new therapeutic and diagnostic targets of E. granulosus infection

___

  • Altintas N. Past to present: Echinococcosis in Turkey, Acta Tropica 2003; 85:105-112.
  • Altintas N, Oztatlici M, Altintas N, Unver A., Sakarya A. "Molecular Analysis of Cattle Isolates of Echinococcus granulosus in Manisa Province.", Kafkas Üniv Vet Fak Derg , 2013; 455-459.
  • Altintas N, Topluoglu S, Yildirim, Uslu H, Eksi F, Ok UZ, Arslan MO et al. Current Situation Report of Cystic Echinococcosıis in Turkey. Turkish Bulletin of Hygiene And Experimental Biology. 2020; 77 (3): 1-51.
  • Altintas Nuray, Karamil S, Turkum O, Akil M, Sakarya A, Bozkaya H et al. A pilot comparative study between serological and genetic investigations in relationship to clinical outcomes on patients with cystic echinococcosis. Helminthologia, 2020; 57 (2): 91-99, DOI number 10.2478/helm-2020-0012.
  • Ancarola ME, Marcilla A, Herz M, Macchiaroli N, Pérez M, Asurmendi S, et al. Cestode parasites release extracellular vesicles with microRNAs and immunodiagnostic protein cargo. Int J Parasitol. 2017; 47(10):675–86. 2.
  • Baheti Kalifu, Abulaihaiti Maitiseyiti, Xiaohu Ge, Xiong Chen, Yuan Meng. Expression profile of circular RNAs in cystic echinococcosis pericystic tissue. J Clin Lab Anal. 2021;00:e23687.
  • Bai, Y., Zhang, Z., Jin, L. et al. Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus. BMC Genomics 2014; 15: 736.
  • Boubaker G, Macchiaroli N, Prada L, Cucher MA, Rosenzvit MC, Ziadinov I, et al. A multiplex PCR for the simultaneous detection and genotyping of the Echinococcus granulosus complex. PLoS Negl Trop Dis. 2013;7(1):e2017. pmid:23350011.
  • Boufana B, Umhang G, Qiu J, Chen X, Lahmar S, Boue F, et al. Development of three PCR assays for the differentiation between Echinococcus shiquicus, E. granulosus (G1 genotype), and E. multilocularis DNA in the co-endemic region of Qinghai-Tibet plateau, China. Am J Trop Med Hyg. 2013; 88(4):795–802. pmid:23438764
  • Brunetti E, Kern P, Vuitton DA, Writing Panel for the WHO Informal Working Group on9 Echinococcosis. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Trop. 2010; 114:1–16.
  • Cai P, Gobert GN, McManus DP. MicroRNAs in parasitic helminthiases: current status and future perspectives. Trends Parasitol [Internet]. 2016; 3332:71–86.
  • Calderon F, Low DE, Ramos AP, Arevalo J, Veland N, Boggild AK, et al. Polymerase Chain Reaction Detection of Leishmania kDNA from the Urine of Peruvian Patients with Cutaneous and Mucocutaneous Leishmaniasis. Am J Trop Med Hyg. 2011; 84: 556–561.
  • Chaya D, Parija SC. Performance of polymerase chain reaction for the diagnosis of cystic echinococcosis using serum, urine, and cyst fluid samples. Trop Parasitol. 2014; 4(1):43–6.
  • Craig PS, McManus DP, Lightowlers MW, Chabalgoity JA, Garcia HH, Gavidia CM, et al. Prevention and control of cystic echinococcosis. Lancet Infect Dis 2007; 7: 385-394.
  • Cucher M, Prada L, Mourglia-Ettlin G, Dematteis S, Camicia F, Asurmendi S, et al. Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes. Int. J. Parasitol. 2011; 41:439–48.
  • Cui SJ, Xu LL, Zhang T, Xu M, Yao J, Fang CY et al. Proteomic characterization of larval and adult developmental stages in Echinococcus granulosus reveals novel insight into host-parasite interactions. J Proteomics. 2013; 12;84:158-75.
  • Ghayour Najafabadi Z, Oormazdi H, Akhlaghi L, Meamar AR, Nateghpour M, Farivar L, et al. Detection of Plasmodium vivax and Plasmodium falciparum DNA in human saliva and urine: Loop-mediated isothermal amplification for malaria diagnosis. Acta Trop. 2014; 136: 44–49.
  • Gottstein B, Wang J, Blagosklonov O, Grenouillet F, Millon L, Vuitton DA, et al. Echinococcus metacestode: in search of viability markers. Parasite. 2014; 21: 63.
  • Huang, Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J. Cell. Mol. Med. 2018; 22, 5768–5775
  • Jafari R, Sanei B, Baradaran A, Spotin A, Bagherpour B, Darani HY. Genetic characterization of Echinococcus granulosus strains isolated from humans based on nad1 and cox1 gene analysis in Isfahan, central Iran. J Helminthol. 2018 Nov; 92(6):696-702.
  • Jiang P, Lo YMD. The Long and Short of Circulating Cell-Free DNA and the Ins and Outs of Molecular Diagnostics. Trends Genet. 2016; 32: 360–371.
  • Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol [Internet]. 2009; 10:126–39.
  • Liu S, Zhou X, Hao L, Piao X, Hou N, Chen Q. Genome-Wide Transcriptome Analysis Reveals Extensive Alternative Splicing Events in the Protoscoleces of Echinococcus granulosus and Echinococcus multilocularis. Front Microbiol. 2017; 8:929. doi:10.3389/fmicb.2017.00929
  • Lu Yang, Liu Hua, Yang Xiao-ying, Liu Jia-xue, Dai Meng-yu, Wu Jia-cheng et al. Microarray Analysis of lncRNA and mRNA Reveals Enhanced Lipolysis Along With Metabolic Remodeling in Mice Infected With Larval Echinococcus granulosus. Frontiers in Physiology. 2020; 11:1078.
  • Lü G, Zhang W, Wang J, Xiao Y, Zhao J, Zhao J et al. Application of a cDNA microarray for profiling the gene expression of Echinococcus granulosus protoscoleces treated with albendazole and artemisinin. Mol Biochem Parasitol. 2014 Dec; 198(2):59-65.
  • Macchiaroli N, Cucher M, Zarowiecki M, Maldonado L, Kamenetzky L, and Rosenzvit MC. MicroRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach. Parasit. Vectors 2015; 8:83.
  • Macpherson, C.N., Milner, R. Performance characteristics and quality control of community based ultrasound surveys for cystic and alveolar echinococcosis. Acta Trop. 2003; 85, 203–209.
  • Mariconti, M., Vola, A., Manciulli, T. et al. Role of microRNAs in host defense against Echinococcus granulosus infection: a preliminary assessment. Immunol Res. 2019; 67, 93–97.
  • McManus DP, Zhang W, Li J, Bartley PB. Echinococcosis. Lancet 2003; 362: 1295-1304.
  • Mirzapour A, Seyyed Tabaei SJ, Bandehpour M, Haghighi A, Kazemi B. Designing a Recombinant Multi-Epitope Antigen of Echinococcus granulosus to Diagnose Human Cystic Echinococcosis. Iran J Parasitol. 2020;15(1):1-10.
  • Moradi M, Meamar AR, Akhlaghi L, Roozbehani M, Razmjou E. Detection and genetic characterization of Echinococcus granulosus mitochondrial DNA in serum and formalin-fixed paraffin embedded cyst tissue samples of cystic echinococcosis patients. PLoS One. 2019; 14(10):e0224501. doi:10.1371/journal.pone.0224501
  • Moro P, Schantz PM. Echinococcosis: a review. Int J Infect Dis 2009; 13: 125-133.
  • Pan W, Shen Y, Han X, Wang Y, Liu H, Jiang Y, Zhang Y, Wang Y, Xu Y, Cao J. Transcriptome profiles of the protoscoleces of Echinococcus granulosus reveal that excretory-secretory products are essential to metabolic adaptation. PLoS Negl Trop Dis. 2014; 11;8(12):e3392.
  • Parkinson J, Wasmuth JD, Salinas G, et al. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis. 2012; 6 (11):e1897.
  • Russomando G, Figueredo A, Almiron M, Sakamoto M, Morita K. Polymerase chain reaction-based detection of Trypanosoma cruzi DNA in serum. J Clin Microbiol. 1992 Nov; 30 (11); 2864–2868.
  • Salant H, Abbasi I, Hamburger J. The development of a loop-mediated isothermal amplification method (LAMP) for Echinococcus granulosus [corrected] coprodetection. Am J Trop Med Hyg. 2012; 87(5): 883–7.
  • Santucciu, C., Masu, G., Mura, A. et al. Validation of a one-step PCR assay for the molecular identification of Echinococcus granulosus sensu stricto G1–G3 genotype. Mol Biol Rep 2019; 46:1747–1755.
  • Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 2015; 16, 24–43.
  • Shang, JY., Zhang, GJ., Liao, S. et al. A multiplex PCR for differential detection of Echinococcus granulosus sensu stricto, Echinococcus multilocularis and Echinococcus canadensis in China. Infect Dis Poverty. 2019; 8, 68.
  • Thys, S., Sahibi, H., Gabriël, S. et al. Community perception and knowledge of cystic echinococcosis in the High Atlas Mountains, Morocco. BMC Public Health 2019; 19: 118. Tsai, I.J.; The Taenia solium Genome Consortium; Zarowiecki, M.; Holroyd, N.; Garciarrubio, A.; SánchezFlores, A.; Brooks, K.L.; Tracey, A.; Bobes, R.J.; Fragoso, G.; et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 2013; 496: 57–63.
  • Wahlstrom H, Comin A, Isaksson M, Deplazes P. Detection of Echinococcus multilocularis by MC-PCR: evaluation of diagnostic sensitivity and specificity without gold standard. Infect Ecol Epidemiol. 2016; 6:30173. pmid:26968153
  • Wan Z, Peng X, Ma L, Tian Q, Wu S, Li J, et al. Targeted Sequencing of Genomic Repeat Regions Detects Circulating Cell-free Echinococcus DNA. PLoS Negl Trop Dis 2020; 14(3): e0008147.
  • Wang, Z.R.; Bo, X.W.; Zhang, Y.Y.; MA, X.; Lu, P.P.; Xu, M.F.; mENG, J.M. microRNA profile analyses of the protoscoleces in Echinococcus granulosus. Acta Vet. et Zootech. Sin. 2018; 49: 2488–2485.
  • WHO Department of Control of Neglected Tropical Diseases. Intergrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases. Geneva: World Health Organization. 2017.
  • Wichmann D, Panning M, Quack T, Kramme S, Burchard G-DD, Grevelding C, et al. Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma. Correa-Oliveira R, editor. PLoS Negl Trop Dis. 2009; 3: e422.
  • Ximenes C, Brandão E, Oliveira P, Rocha A, Rego T, Medeiros R, et al. Detection of Wuchereria bancrofti DNA in paired serum and urine samples using polymerase chain reaction-based systems. Mem Inst Oswaldo Cruz. 2014; 109: 978–983.
  • Yu, A.; Wang, Y.; Yin, J.; Zhang, J.; Cao, S.; Cao, J.; Shen, Y. Microarray analysis of long non-coding RNA expression profiles in monocytic myeloid-derived suppressor cells in Echinococcus granulosus-infected mice. Parasit. Vectors 2018;11: 327.
  • Zhang T, Yang D, Zeng Z, Zhao W, Liu A, Piao D, et al. Genetic Characterization of Human-Derived Hydatid Cysts of Echinococcus granulosus Sensu Lato in Heilongjiang Province and the First Report of G7 Genotype of E. canadensis in Humans in China. PLoS ONE 2014; 9(10): e109059.
  • Zhang W, Wen H, Li J, Lin R, McManus DP. Immunology and immunodiagnosis of cystic echinococcosis: an update. Clin Dev Immunol. 2012; 101895. doi:10.1155/2012/101895
  • Zhang X, Gong W, Cao S, Yin J, Zhang J, Cao J, Shen Y. Comprehensive Analysis of Non-coding RNA Profiles of Exosome-Like Vesicles From the Protoscoleces and Hydatid Cyst Fluid of Echinococcus granulosus. Front Cell Infect Microbiol. 2020;10:316.
Van Sağlık Bilimleri Dergisi-Cover
  • ISSN: 2667-5072
  • Başlangıç: 2018
  • Yayıncı: Van Yüzüncü Yıl Üniversitesi
Sayıdaki Diğer Makaleler

KORONER ARTER HASTALIĞINDA ÇEVRİMİÇİ SAĞLIK UYGULAMALARI

Dilara ŞAHAN, Nurdan GEZER

Çölyak Hastalarında Deri Yama Testi Sonuçları

Ayşe Şenay ŞAŞİHÜSEYİNOĞLU, Mehmet AĞIN, Aylin KONT, Zeliha HAYTOGLU, Gökhan TÜMGÖR, Dilek DOĞRUEL, Derya ALTİNTAS

Covid 19: Risk faktörleri, Tedavide Kullanılan İlaçlar ve Ölüm Oranı

Ersoy ÖKSÜZ, M. Serdar BUĞDAY, Leman ACUN DELEN, Ozlem ÇAĞAŞAR, Bilgehan DEMİR, İbrahim AKTAŞ, Muhammet SİANANOĞLU, Ayşegül ALTINTOP GEÇKİL, Rabia AYDOGAN BAYKARA, Hülya ALADAĞ, Ajda GÜNEŞ, Erdal AKTÜRK, İrem PEMBEGÜL

ÜREME SEZONUNDA SENKRONİZE EDİLEN KEÇİLERDE DONDURULMUŞ SPERMA İLE FARKLI ZAMANLARDA YAPILAN SERVİKAL TOHUMLAMALARIN GEBELİK ORANLARINA ETKİSİ

Fikret KARACA, Nurdan COŞKUN ÇETİN, Haydar DEMİREZER, Oğuz Kaan YALÇIN, Cafer Tayyar ATEŞ

Gebelerde prenatal tanı testlerinin ve sonuçlarının farkındalığı: Gaziantep’te yapılan kesitsel bir çalışma

Elif PALA, Kenan YİĞİTBAŞ, Muhammet Ali ALIN, Melek DEMİRKOL, Emine Gizem OLCAR, Fatma Betül CESUR, Şevval DİRİCAN, İzel ÖZSAVAŞ, Beyza Nur TUĞCAN, Fulay KANTAR, Onur BAYSÖZ, İbrahim ÖZEL, Murat ALTINSOY, Kaan Fevzi ÇETİNKAYA, Pinar Gunel KARADENİZ, Esra ÖZKAPLAN, Ozlem SORAN

İran’da Koyun ve Keçilerde Küçükbaş Ruminant Morbillivirusunun (SRMV) Seroprevalansı

Ali Rıza BABAOĞLU, Mohammadreza MAHZOUNIEH, Seval BILGE DAGALP

HOLŞTEİN IRKI İNEKLERDE OVSYNCH SENKRONİZASYONUNUN FARKLI GÜNLERİNDE β-KAROTEN UYGULAMASININ DÖL VERİMİ ÜZERİNE OLAN ETKİSİ

Ayşegül BİLDİK, Hidayet YAMAN

KADINLARDA MEME KANSERİ RİSK DÜZEYİ VE TARAMA YÖNTEMLERİNİ KULLANMA DURUMU

Gülengül MERMER, Özge GÜZEKİN

Üniversite Sınavına Hazırlanan Gençlerin Covid-19 Korkusunun Öğrencilerin Tükenmişlik ve Anksiyetelerine Etkisi

Melike YAVAŞ ÇELİK

Pediatri kliniklerinde sık görülen medikal hatalar ile hemşirelerin ruh hali ve iş motivasyonu arasındaki ilişki.

Mehmet Semih DEMİRTAŞ