Konvansiyonel Yöntem ile Model Üzerinde Elde Edilen Lineer Ölçümlerin ve Bolton Analizinin OrthoCAD Yazılımıyla Karşılaştırılması

Bu çalışmanın amacı iTero Element 2 ağız içi tarayıcısıyla üç boyutlu ortama aktarılan alçı modellerin OrthoCAD yazılımı ile elde edilen ark boyu sapması, ark boyu, Bolton analizi, overjet ve overbite değerlerinin konvansiyonel yöntemler ile karşılaştırmaktır. Araştırmaya ortodontik tedavi amacıyla başvurmuş 18-25 yaş arası Angle Sınıf I, Angle Sınıf II ve Angle Sınıf III olmak üzere toplam 30 bireyden elde edilen alçı model dahil edilmiştir. Modeller iTero Element 2 ağız içi tarayıcıları ile dijital ortama aktarılmıştır. Modeller üzerinde ark boyu sapması, ark boyu, Bolton analizi, overjet ve overbite değerlendirilmesi amacıyla ölçümler gerçekleştirilmiştir. Ölçümler 30 gün ara ile tekrarlanmıştır. Üzerinde durulan özellikler için tanımlayıcı istatistikler; ortalama, standart sapma, minimum ve maksimum değer olarak ifade edilmiştir. Bu özellikler bakımından birinci ve ikinci ölçüm farklarını karşılaştırmada eşleştirilmiş t testi kullanılmıştır. Gruplar arasında ark boyu sapması, overjet ve overbite değerleri bakımından istatistiksel olarak anlamlı bir fark gözlenmemiştir. Ark boyu ölçümlerinden alt ark boyu ölçümleri için iki yöntem arasında istatistiksel olarak anlamlı fark bulunmuştur. Bolton analizinde ön oranda istatistiksel olarak anlamlı fark tespit edilirken tüm oranda istatistiksel olarak anlamlı fark gözlenmemiştir. Üç boyutlu tarayıcı iTero 2 Element ile elde edilen modeller üzerinde OrthoCAD yazılım değerleri konvansiyonel yöntemler ile kıyaslandığında güvenilir olduğu ve bir alternatif olabileceği düşünülmektedir.

Comparison of Linear Measurements and Bolton Analysis on the Model Obtained from Conventional Method with OrthoCAD Software

The aim of this study is to compare the arc length deviation, arc length, Bolton analysis, overjet and overbite values obtained from OrthoCAD software of plaster models, transferred to the three-dimensional environment with the iTero Element 2 intraoral scanner, with conventional methods. The study included plaster model obtained from a total of 30 individuals aged 18-25 years old, Angle Class I, Angle Class II and Angle Class III who obtained for orthodontic treatment. Models were digitized with iTero Element 2 intraoral scanners. To determine the arc length deviation, arc length, Bolton analysis, overjet and overbite, measurements were carried out on the models. The measurements were repeated 30 days apart from each other. For the characteristics considered, descriptive statistics are expressed as mean, standard deviation, minimum and maximum value. In terms of these characteristics, the paired sample t-test was used to compare the first and second measurement differences. In terms of arc length deviation, overjet, and overbite values, there was no statistically significant difference between the groups. A statistically significant difference was found between the two methods for lower arch length measurements. A statistically significant difference in the anterior ratio was found in the Bolton analysis, while no statistically significant difference in the overall ratio was observed. When compared to traditional approaches, the values obtained on the models obtained with the iTero 2 Element 3D scanner and the OrthoCAD software are thought to be accurate and alternative.

___

  • 1. Peluso MJ, Josell SD, Levine SW, Lorei BJ. Digital models: An introduction. Semin Orthod. 2004;10(3):226-38.
  • 2. Stuart HW, Priest WR. Errors and discrepancies in measurement of tooth size. J Dent Res. 1960;39(2):405-14.
  • 3. Rheude B, Sadowsky PL, Ferriera A, Jacobson A. An Evaluation of the use of digital study models in orthodontic diagnosis and treatment planning. Angle Orthod. 2005;75(3):300-4.
  • 4. Fleming PS, Marinho V, Johal A. Orthodontic measurements on digital study models compared with plaster models: a Systematic Review. Orthod Craniofac Res. 2011;14(1):1-16.
  • 5. Camardella LT, Breuning H, Vilella OV. Accuracy and reproducibility of measurements on plaster models and digital models created using an intraoral scanner. J Orofac Orthop Fortschritte Kieferorthopädie Organ Official J Dtsch Ges Für Kiefer. 2017;78(3):211-20.
  • 6. Kau CH, Littlefield J, Rainy N, Nguyen JT, Creed B. Evaluation of CBCT digital models and traditional models using the Little’s Index. Angle Orthod. 2010;80(3):435-9.
  • 7. Wiranto MG, Engelbrecht WP, Nolthenius HET, Meer WJ, Ren Y. Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 2013;143(1):140- 7.
  • 8. Kravitz ND, Groth C, Jones PE, Graham JW, Redmond WR. Intraoral digital scanners. J Clin Orthod JCO. 2014;48(6):337-47.
  • 9. Lecocq G. Digital impression-taking: Fundamentals and benefits in orthodontics. Int Orthod. 2016;14(2):184-94.
  • 10. Stewart MB. Dental models in 3D. Orthod Prod. 2001;2:21-4.
  • 11.Abizadeh N, Moles DR, O’Neill J, Noar JH. Digital versus plaster study models: how accurate and reproducible are they? J Orthod. 2012;39(3):151-9.
  • 12. Flügge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 2013;144(3):471-8.
  • 13. Ender A, Mehl A. Influence of scanning strategies on the accuracy of digital intraoral scanning systems. Int J Comput Dent. 2013;16(1):11-21.
  • 14. Mehl A. A new concept for the integration of dynamic occlusion in the digital construction process. Int J Comput Dent. 2012;15(2):109-23.
  • 15. Ender A, Mehl A. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence Int. 2015;46(1):9-17.
  • 16. Sıcakyüz Ç. Bilişim teknolojilerine karşı gösterilen direncin analizi ve ikna modeli: Sağlık alanında uygulama. Doktora Tezi, Adana: Çukurova Üniversitesi, 2018.
  • 17. Keim RG, Gottlieb EL, Vogels DS, Vogels PB. Study of orthodontic diagnosis and treatment procedures, part 1: results and trends. J Clin Orthod. 2014;48(10):607-30.
  • 18. White AJ, Fallis DW, Vandewalle KS. Analysis of intra-arch and interarch measurements from digital models with 2 impression materials and a modeling process based on cone-beam computed tomography. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 2010;137(4):456-457.
  • 19. Alcan T, Ceylanoğlu C, Baysal B. The relationship between digital model accuracy and time-dependent deformation of alginate impressions. Angle Orthod. 2009;79(1):30-6.
  • 20. Dalstra M, Melsen B. From alginate impressions to digital virtual models: accuracy and reproducibility. J Orthod. 2009;36(1):36- 41;14.
  • 21. Naidu D, Freer TJ. Validity, reliability, and reproducibility of the iOC intraoral scanner: a comparison of tooth widths and Bolton ratios. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 2013;144(2):304-10.
  • 22. Grünheid T, McCarthy SD, Larson BE. Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 2014;146(5):673-82.
  • 23. Lemos LS, Rebello IMCR, Vogel CJ, Barbosa MC. Reliability of measurements made on scanned cast models using the 3 Shape R 700 scanner. Dento Maxillo Facial Radiol. 2015;44(6):20140337.
  • 24. Mullen SR, Martin CA, Ngan P, Gladwin M. Accuracy of space analysis with emodels and plaster models. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 2007;132(3):346-52.
  • 25. Stevens DR, Flores-Mir C, Nebbe B, Raboud DW, Heo G, Major PW. Validity, reliability, and reproducibility of plaster vs digital study models: comparison of peer assessment rating and Bolton analysis and their constituent measurements. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 2006;129(6):794-803.
  • 26. Cuperus AMR, Harms MC, Rangel FA, Bronkhorst EM, Schols JGJH, Breuning KH. Dental models made with an intraoral scanner: a validation study. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 2012;142(3):308-13.
  • 27.Quimby ML, Vig KWL, Rashid RG, Firestone AR. The accuracy and reliability of measurements made on computer-based digital models. Angle Orthod. 2004;74(3):298-303.
  • 28. Wiranto MG, Nolthenius HET, Meer WJ, Engelbrecht WP, Ren Y. Validity and reliability of digital diagnostic measurements on digital three-dimensional dental models. Ned Tijdschr Tandheelkd. 2012;119(2):78-83.
  • 29. Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ. Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. 2009;136(1):16.
  • 30. Asquith J, Gillgrass T, Mossey P. Threedimensional imaging of orthodontic models: a pilot study. Eur J Orthod. 2007;29(5):517-22.
  • 31. Shellhart WC, Lange DW, Kluemper GT, Hicks EP, Kaplan AL. Reliability of the Bolton tooth-size analysis when applied to crowded dentitions. Angle Orthod. 1995;65(5):327- 34.
  • 32. Nalcaci R, Topcuoglu T, Ozturk F. Comparison of Bolton analysis and tooth size measurements obtained using conventional and three-dimensional orthodontic models. Eur J Dent. 2013;7(1):66-70.
  • 33. Reuschl RP, Heuer W, Stiesch M, Wenzel D, Dittmer MP. Reliability and validity of measurements on digital study models and plaster models. Eur J Orthod. 2016;38(1):22-6.