Betonarme Perde Duvarların Farklı Plastik Mafsal İlişkilerine göre Deplasman Davranışlarının Araştırılması

Bu çalışmanın amacı, sismik bölgelerde bulunan dikdörtgen en-kesitli süneklik düzey yüksek betonarme perde duvarlar için plastik mafsal uzunluğunu ve yük-tepe deplasman ilişkisini araştırmaktır. Sismik tasarım ile ilgili plastik mafsal uzunlukları için; literatürde önerilen bağıntılar ile mevcut yönetmeliklerde verilen koşullar kullanılmaktadır. Betonarme perde duvarların tepe yük-deplasman ilişkisinin yatay yükler altındaki plastik mafsal bölgelerinde değerlendirilmesi için analitik çalışma yapılmıştır. Plastik mafsal boyu olarak adlandırılan plastik şekil değiştirme bölgesinin uzunluğu bu çalışmada farklı yönetmelikler ve araştırmacılar tarafından önerilen bağıntılar dikkate alınarak araştırılmıştır. Tasarlanan betonarme perde duvarlarda plastik mafsal modelleri için farklı araştırmacılar tarafından ve yönetmeliklerde önerilen bağıntılar araştırılarak kesit geometrisi ve detaylarına göre plastik mafsal uzunlukları elde edilmiştir. Daha sonra farklı bağıntılardan elde edilen plastik mafsal uzunluklarına göre betonarme perde duvarların akma yer değiştirme ve plastik yer değiştirme değerleri hesaplanarak perde duvarların toplam tepe deplasman değerleri elde edilerek karşılaştırılmıştır. Bu çalışmanın sonucu, plastik mafsal uzunluğunun betonarme perde duvarların yer değiştirme ve deplasman süneklik değerlerinde önemli bir etkiye sahip olduğu göstermiştir. Plastik mafsal yüksekliğini etkileyen en önemli parametre betonarme perde duvarların boyutlarıdır. 

Investigation of Displacement Behavior of Reinforced Concrete Shear Walls with Different Plastic Hinge Relationships

The aim of this study is to investigate the plastic hinge length and peak displacement relationship for rectangular cross-sectional high ductile concrete shear walls in seismic zones. For plastic hinge lengths related to seismic design; the conditions given in the current regulations are used in the literature. An analytical study was conducted to evaluate the peak displacement relationship of reinforced concrete shear walls in seismic loads under plastic hinge regions. The length of the plastic deformation zone called the plastic hinge length has been investigated in this study by considering the regulations proposed by different regulations and researchers. Plastic hinge lengths of the designed reinforced concrete shear walls were calculated by plastic hinge models proposed by different researchers and regulations. Then, according to the plastic hinge lengths obtained from different relations, the yield displacement and plastic displacement values of the reinforced concrete shear walls were calculated and the total peak displacement values of the shear walls were obtained. The results of this study indicated that increase in plastic hinge length has a significant effect on the displacement and displacement ductility values of reinforced concrete shear walls. The most important parameter affecting the plastic hinge length is the dimensions of the reinforced concrete shear walls.

___

  • Aydin, S., (2018). Evaluation of Plastic Hinge Length Estimations and Strain Limits of Reinforced Concrete Shear Walls, M.Sc. Thesis, Istanbul Technical University, Turkey.
  • ASCE Standard, 41., (2017). Seismic Evaluation and Retrofit of Existing Buildings, (ASCE/SEI 41-17), Published by The American Society of Civil Engineers, Reston, Virginia, p. 20191-4382, USA.
  • ACI 318., (2014). Building code requirements for reinforced concrete and commentary, American Concrete Institute Committee, ISBN: 978-0-87031-930-3.
  • Altheeb, A., Albidah, A., and Lam, N., (2015). Analytical modelling of strain penetration deformation in reinforced concrete members, Paper presented at the Proceedings of the 10th Pacific Conference on Earthquake Engineering, Sydney, Australia, 6–8 November.
  • Beyer, K., Dazio, A. and Priestley, M. J. N., (2011). Shear Deformations of Slender Reinforced Concrete Walls under Seismic Loading, ACI Structural Journal, 108(2), March-April 2011.
  • Bohl, A., and Adebar, P., (2011). Plastic hinge lengths in high-rise concrete shear walls, ACI Structural Journal., 108(2), 148–157.
  • Biskinis, D. and Fardis, M.N., (2010). Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars, Structural concrete, 11(2), 93-108.
  • European Committee for Standardization (CEN)., (2005). Eurocode 8: Design of structures for earthquake resistance: Part 3: Assessment and retrofitting of buildings. BS EN 1998-3, Brussels, Belgium.
  • Hoult, R., Goldsworthy, H., and Lumantarna, E., (2018). Plastic Hinge Length for Lightly Reinforced Rectangular Concrete Walls. Journal of Earthquake Engineering, 22(8), 1447–1478.
  • Kazaz, İ., (2013). Analytical Study on Plastic Hinge Length of Structural Walls. Journal of Structural Engineering, 139(11): 1938-1950.
  • Mander, J. B., Priestley, M. J. N. and Park, R., (1988). Theoretıcal stress-straın model for confıned concrete, Journal of Structural Engineering, ASCE, 114(8), 1804-1826.
  • Mattock, A. H., (1967). Discussion of Rotational capacity of reinforced concrete beams, by W.G. Corley. J. Struct. Div., 93(ST2), 519–522.
  • Park, R., and Paulay, T., (1975). Reinforced concrete structures, Wiley, New York.
  • Paulay, T., and Priestley, M. J. N., (1992). Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley, New York.
  • Paulay, T and Priestley, M. J. N., (1993). Stability of ductile structural walls. ACI Structure Journal, 90(4), 385–392.
  • Paulay, T and Uzumeri, S. M., (1975). A critical review of the seismic design provisions for ductile shear walls of the Canadian code, Canadian Journal of Civil Engineering, 2, 592–601.
  • Priestley, M. J. N., Calvi, G. M., and Kowalsky, M. J., (2007). Displacement based seismic design of structures, IUSS Press, Pavia, Italy.
  • Priestley, M. J. N., Seible, F., and Calvi, G. M., (1996). Seismic design and retrofit of bridges, Wiley, New York.
  • Priestley, M. J. N., and Park, R., (1987). Strength and ductility of concrete bridge columns under seismic loading, Structural Journal, 84(1), 61–76.
  • SAP,.(2000). Structural Software for Analysis and Design, Computers and Structures, Inc. Version 20.0.0. USA.
  • Sawyer, H. A., (1964). Design of Concrete Frames for Two Failure Stages, Proceeding of The International Symposium on The Flexural Mechanics of Reinforcement Concrete, ASCE-ACI, Miami, 12, 405-431.
  • Thomsen, J., and Wallace, J., (2004). Displacement-based design of slender reinforced concrete structural walls-experimental verification, Journal of Structural Engineering, 130(4), 618-630.
  • TS500., (2000). Requirements for Design and Construction of Reinforced Concrete Structures, Turkish Standards Institute, Ankara, Turkey.
  • TSC., (2018). Deprem Etkisi Altinda Binalarin Tasarimi için Esaslar, T.C. Bayındırlık ve İskan Bakanlığı, Ankara.
  • Uniform Building Code., (1997). International Council of Building Officials, Whittier, California.
  • Zhi, Q., Zhou, B., Zhu, Z., and Guo, Z., (2019). Evaluation of Load–Deformation Behavior of Reinforced Concrete Shear Walls with Continuous or Lap-Spliced Bars İn Plastic Hinge Zone. Advances in Structural Engineering, 22(3) 722–736.
Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi-Cover
  • ISSN: 2667-8764
  • Başlangıç: 2019
  • Yayıncı: Selim TAŞKAYA