Farklı Nikel-Titanyum Teller Tarafından Uygulanan Kuvvet Miktarının Ölçülmesi

Amaç: Bu çalışmanın amacı, nikel-titanyum tellerin kalınlıklarına ve markalarına göre kuvvet seviyelerini değerlendirmektir. Gereç ve Yöntem: Beş farklı marka tarafından üretilen üç farklı boyutta nikel titanyum tel test edildi. Çalışma sürecinde bir fantom model kullanıldı. Maksiller santral kesici, kanin ve ikinci premolar dişler kuvvetleri ölçmek için yeterli alan sağlamak amacıyla oklüzal yüzeylerinden möllendi. Ark telleri, elastik ligatürlerle braketlere bağlandı. Dişler üzerinde ölçüm noktaları belirlendi ve bu noktalara uygulanan kuvvet miktarı bir gauge ile hesaplandı. Test süresince sıcaklık dijital bir sistemle kontrol edildi. Tüm ölçümler ağıziçi ortama benzer şekilde 37.5 ± 1 ° C’de aynı sıcaklıkta yapıldı. Bulgular: Tel kalınlaştıkça kuvvet miktarı artmıştır. Markalar arasındaki kuvvet düzeyinde farklılıklar vardır. Kanin dişlerine uygulanan kuvvet miktarı diğer dişlerden biraz daha yüksektir ve bunun ayrıntılı olarak değerlendirilmesi gerekmektedir.Sonuç: Ortodontik tedavi kuvvetle yönlendirilir. Kuvvetin seviyesi ve tipi, kullanılan malzemelerin mekanik özelliklerine, kalınlığına ve türüne bağlıdır
Anahtar Kelimeler:

Ark teli , NiTi , Ortodonti, Kuvvet.

Analyzing the Force Value That is Applied by Different Kind Of Nickel-Titanium Wires

Aim: The objective of this study is to evaluate the force level of nickel-titanium wires according to their thickness and brands.Material and Method: Three different sizes of nickel titanium wires manufactured by five different brands were tested. A phantom model was used for study process. Occlusal surfaces of maxillary central incisor, canine and second premolar were grinded for getting space to measure the forces. Arch wires are connected to brackets with elastic ligatures. Measuring points were determined on the teeth and the amount of force applied to these points was calculated by a gauge. The test temperature was controlled with a digital system. All measurements were made at a same temperature of 37.5 ± 1 ° C similar to the oral condition.Results: The amount of force was increased when the wire gets thickened. There were differences at the amount of force levels between brands. The amount of force applied to the canine teeth is slightly higher than other teeth, so it needs to be evaluated in detail.Conclusion: Orthodontic treatment is directed by force. The level and the type of force is determined by the mechanical properties, thickness and type of materials used

___

  • 1. Börekçi T. Sabit ortodontik tedavide kullanılan malzemelerin ortodontik tedavide etkinliği. Ege Üniversitesi Bitirme Tezi, İzmir 2012
  • 2. Neelakantan L, Monchev B, Frotscher M, Eggeler G. The influence of secondary phase carbide particles on the passivity behaviour of NiTi shape memory alloys. Materials and Corrosion 2012; 63:979-984.
  • 3. Abbasi-Chianeh V, Khalil-Allafi J, Kazemi-Choobi K. The effect of post-deformation aging on superelastic properties of NiTi thin wires attaining micro and nano-substructure. Journal of Alloys and Compounds 2013; 563:44-50.
  • 4. Garrec P, Tavernier B, Jordan L. Evolution of flexural rigidity according to the cross-sectional dimension of a superelastic nickel titanium orthodontic wire. Eur J Orthod 2005; 27(4):402-407.
  • 5. Tosun Y. Sabit Ortodontik Apareylerin Biyomekanik Prensipleri. Ege Üniversitesi Bitirme Tezi, İzmir 1999.
  • 6. Liaw YC, Su YY, Lai YL, Lee SY. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis. Am J Orthod Dentofacial Orthop 2007; 131(5): 578.e12-8.
  • 7. Khier SE, Brantley WA, Fournelle RA. Bending properties of superelastic and non superelastic nickeltitanium orthodontic wires. Am J Orthod Dentofacial Orthop 1991;99:310-312.
  • 8. Andreasen GF, Hileman TB. An evaluation of cobalt substituted wire for orthodontics. J Am Dent Assoc 1971;82:1373-1375.
  • 9. Brantley WA. Orthodontic wires. In: Brantley WA, Eliades T, editors. Orthodontic materials: Scientific and clinical aspects. Stuttgard, Thieme; 2001. 91-99.
  • 10. Duerig TW, Melton KN, Stockel D, Wayman CM. Engineering Aspects of Shape Memory Alloys. Tiptree, Essex, UK: Butterworth-Heinemann; 1990. 3-20.
  • 11. Santoro M, Nicolay OF, Cangialosi TJ. Pseudoelasticity and thermoelasticity of nickel-titanium alloys: A clinically orientedreview. Part I: Temperature transitional ranges. Am J Orthod Dentofacial Orthop 2001;119:587-593.
  • 12. Lombardo L, Toni G, Stefanoni F, Mollica F, Guarneri MP, Siciliani G. The effect of temperature on the mechanical behavior of nickel-titanium orthodontic initial archwires. Angle Orthod 2013;83(2):298-305.
  • 13. Fernandes DJ, Elias CN, Vidala R, de Moraes Mendes A. Mechanical performance of nickel-titanium archwires. Materials Research 2015;18(6):1264-1277
  • 14. Meling TR, Odegaard J. The effect of short-term temperature changes on superelastic nickel-titanium archwires activated in orthodontic bending. Am J Orthod Dentofacial Orthop 2001;119(3):263-273.
  • 15. Nakano H, Satoh K, Norris R, Jin T, Kamegai T, Ishikawa F, Kat sura H. Mechanical properties of several nickeltitanium alloy wires in three-point bending tests. Am J Orthod Dentofacial Orthop 1999; 115(4): 390-398.
  • 16. Schemann-Miguel F, Cotrim-Ferreira F, Streva AM, Chaves AVOA. Comparative analysis of load/deflection ratios of conventional and heatactivated rectangular NiTi. Dental Press J Orthod 2012;17(3):23.e1-6.
  • 17. Tonner RI, Waters NE. The characteristics of super-elastic Ni-Ti wires in three-point bending. Part I: The effect of temperature. Eur J Orthod 1994; 16(5): 409-419.
  • 18. Lombardo L, Toni G, Stefanoni F, Mollica F, Guarneri MP, Siciliani G. The effect of temperature on the mechanical behavior of nickel-titanium orthodontic initial archwires. Angle Orthod 2013;83(2):298-305.