Klasik bitki ıslahı ve genetik mühendisliği ile oluşturulan değişimlere genel bakış

Bitki ıslahı insanlar tarafından binlerce yıl önce başlatılmıştır. Tarım öncesi dönemde insanlar tohumları yılın belli bir zamanında toprağa bırakmayı öğrenmişler; bu ise bitkilerin kültüre alınmasında başlangıca ve bitkilerin ilk olarak üretilmelerine yol açmıştır. Kültür bitkileri, farklı genetik kaynaklardaki doğal varyasyonun kullanılmasıyla ve klasik ıslah yöntemleri (seleksiyon, mutasyon, melezleme...)’nden yararlanarak geliştirilmiştir. Genlerin doğal yoldan aktarımında seleksiyon ya da genetik mühendisliği gibi birçok genetik teknikler alternatif olabilirler. Pestisite dayanıklı (Bt) ürünlerinin geliştirilmesi, virüs kılıf proteinleri yardımıyla virütik hastalıklara karşı dayanıklılığı sağlayan genlerin kazandırılması, kültür bitkilerinin besin madde düzeyinin artan yönde hızlandırılması transgenik teknolojinin başarılarından bazılarıdır.

General outlook of variations induced by conventional plant breeding and genetic engineering

Plant improvement by man began many thousand of years ago. Pre-agricultural man learned that seeds put into the ground at a certain time of the year. This was the beginning of domestication of plants and led to the production of the first crops. Crop plants have been improved with traditional plant breeding methods (selection, mutation etc.) utilizing natural variation within different genetic resources. The natural transfer of genes can be altered using many genetic techniques such as selection or genetic engineering. The development of pest-resistant (Bt) crops, introduction of virus coat protein-mediated resistance to viral diseases, and enhancing nutritional level crop plants are some of the accomplishments of transgenic technology.

___

  • Allard, R. W., 1960. Principles of Plant Breeding, Library of Congress Catalog Card Number 60-14240, ISBN 0 471 12310, 1-485, John Wiley and Sons, Inc., Newyork, London, Sydney
  • Allard, R. W., 1999. History of plant population genetics, Annu. Rev. Genet. 33:1-27.
  • Anonim, 2003. Cornell University Animal Breeding Web Page, http://www.ansi.cornell.edu/plants/toxins.html
  • Barcelo, P. and P. A. Lazzeri, 1998. Direct Gene Transfer: Chemical & Physical Methods, Transgenic Plant research (ed.) K. Lindsay, 2:35-55.
  • Barnabas, B., K. Jager, and A. Feher, 2008. The effect of drought and heat stress on reproductive process in cereals, Plant Cell and Environment, 31:11-38.
  • Bolin, P., W. Hutchison, and D. Davis, 1996. Resistant hybrids and Bacillus thuringiensis for management of European corn borer (Lepidoptera: Pyralidae) in sweet corn. J. Econ. Entomol. 89:82-91.
  • Bottinger, P., A. Steinmetz, O. Scheider, and T. Pickard, 2001. Agrobacterium-mediated transformation of Vicia faba, Molecular Breeding, 3:243-254.
  • Crawley, M. J., S. L. Brown, R.S. Hails, D.D. Kohn, and M. Rees, 2001. Biotechnologytransgenic crops in natural habitats. Nature 409:682-683.
  • Demir, İ., 1975. Genel Bitki Islahı, Ege Üniv. Zir. Fak. Yay. No 212, 331 sayfa, Bornova, İzmir.
  • Demuth, P.J. and M.J. Wade, 2006. Experimental methods for measuring gene interactions, Annu. Rev. Evol. Syst., 37:289-316.
  • Doebley, J., A. Stec, J. Wendel, and M. Edwards, 1990. Genetic and morphological analysis of a maize-teosinte F2 population: Implications for the origin of maize. Proc. Natl. Acad. Sci. (USA) 87:9888-9892.
  • Doebley, J., A. Stec, and L. Hubbard, 1997. The evolution of apical dominance. Nature.386:485-488.
  • Drake, J., B. Charlesworth, D. Charlesworth, and J. Crow, 1998. Rates of spontaneous mutation. Genetics 148:1667-1686.
  • Duvick, D., 2001. Biotechnology in the 1930s: The development of hybrid maize. Nature Rev. Genet. 2:69-74.
  • Falconer, D.S., 1989. Introduction to quantitative genetics. 3rd ed. Longman Burnt Mill, Harlow, Essex, UK.
  • Ferber, D., 1999. Risks and benefits: GM crops in the cross hairs. Science 286:1662-6.
  • Flint-Garcia, A.S., M.J. Thornsberry, and E.S. Bucker, 2003. Structure of linkage disequlibrium in plants, Annu. Rev. Plant Biol., 54: 357-374.
  • Fox, J.L., 1997. Farmers say Monsanto’s engineered cotton drops bolls. Nature Biotechnology, 15:1233.
  • Garandillo, S. and S.D. Tanksley, 1996. QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 92:935-951.
  • Gasser, C.S. and T.R. Fraley, 1989. Genetically engineered plants for crop improvement. Science 4910: 1293-1299.
  • Gelvin, B. S., 2000. Agrobacterium and plant genes involved in T-DNA Transfer and Integration, Annu. Rev. Plant Physiol. Plant Mol. Biol.51:223-256.
  • Gepts, P., 1999. A phylogenetic and genomic analysis of crop germplasm: A necessary condition for its rational conservation and utilization. pp. 163-181. In J. Gustafson (ed.) Proc. Stadler symposium. Plenum, New York.
  • Gepts, P., 2002. A Comparison between Crop Domestication, Classical Plant Breeding, and Genetic Engineering. Crop Sci. 42: 1780-1790.
  • Gottlieb, L.D., 1984. Genetics and morphological evolution in plants. Am. Nat. 123:681- 709.
  • Hansen, M.K., 2000. Genetic engineering is not an extension of conventional plant breeding: How genetic engineering differs from conventional breeding, hybridization, wide crosses and horizontal gene transfer. pp: 1-7. Research Associate, Consumer Policy Institute, Consumers Union.
  • Hargrove, T., W. Coffman, and V. Cabanilla, 1979. Genetic interrelationships of improved rice varieties in Asia. Research paper series No.23. IRRI, Los Banos, the Philippines.
  • Harlan, J., 1992. Crops and man. 2nd ed. ASA, Madison, WI. Hails, R.S., Rees, M., Kohn,
  • D.D. and M.J. Crawley, 1997. Burial and seed survival in Brassica napus subsp. oleifera and Sinapis arvensis including a comparison of transgenic and non- transgenic lines of the crop. Proc. R. Soc. London Ser. B. 264:1-7.
  • Hillman, G. and S. Davies, 1999. Domestication rate in wild wheats and barley under primitive cultivation. pp:70-102. In P. Anderson (ed.) Prehistory of agriculture: New experimental and ethnographic approaches, Vol.Monograph 40. Institute of Archaeology, University of California, Los Angeles, CA.
  • Hilton, H. and B. Gaut, 1998. Speciation and domestication in maize and its wild relatives. Evidence from the globulin-1 gene. Genetics 150:863-872.
  • Hilu, K., 1983. The role of single-gene mutation in the evolution of flowering plants. pp: 97-128. In M.K. Hecht et al. (ed.) Evolutionary biology, Vol.16, Plenum, New York.
  • Jain, M. S., 2001. Tissue culture-derived variation in crop improvement, Euphytica, 118:153-166.
  • Jauhar, P. P., 2001. Genetic engineering and accelerated plant improvement: Opportunities and challenges, Plant Cell, Tissue and Organ Culture 64: 87-91.
  • Jauhar, P. P. and R.N. Chibbar, 1999. Chromosome-mediated and direct gene transfers in wheat, Genome 4:570-583.
  • Kartha, K. K., N. S. Nehra, R. N. Chibbar, and J.R. Henry, 1993. Genetic engineering of wheat and barley, pp: 21-30 Cereal Chem. Div. Symp on Imp. of Cereal Quality by Genetic Engineering, Sydney Australia, 12-16 September 1993
  • Lazzeri, P. A. and P.R. Shewry, 1993. Biotechnology of Cereals, Biotechnology and Genetic Engineering Review, (ed.) M. P. Tombr, pp:79-146.
  • Ladizinsky, G., 1985. Founder effect in crop plant evolution. Econ. Bot. 39:191-198.
  • Lee, M., 1995. DNA markers and plant breeding programs. Adv. Argon. 35:265-344.
  • Le Thierry D’Ennequin, M., B. Toupance, T. Robert, B. Godelle, and P. Gouyon, 1999. Plant domestication: A model for studying the selection of linkage. J. Evol. Biol. 12:1138-1147.
  • Liljegren, S., G. Ditta, H. Eshed, B. Savidge, J. Bowman, and M. Yanofsky, 2000. Shatterproof mads-box genes control seed dispersal in Arabidopsis. Nature 404:766- 770.
  • Lius, S., R. Manshardt, M. Fitch, J. Slightom, J. Sanford, and D. Gonsalves, 1997. Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Mol. Breed. 3:161-168
  • Livermore, M., 2002. The role of modern biotechnology in developing country agriculture. Nutrition Bulletin, 1:47-50.
  • Long, A., B. Benz, D. Donahue, A. Jull, and L. Toolin, 1989. First direct AMS dates on early maize from Tehuacn, Mexico. Radiocarbon 31:1035-1040.
  • Losey, J.E., L. S. Rayor, and M.E. Carter, 1999. Transgenic pollen harms monarch larvae. Nature 399 (6733): 214.
  • Mohan, M., S. Nair, A. Bhagwat, T. G. Krishna, M. Yano, C. R. Bhatia, and T. Sasaki, 1997. Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding, 3: 87-103.
  • Muthukrishnan, S, H. G. Liang, N. H. Trick, and S.B. Gill, 2001. Pathogenesis-related proteins and their genes in cereals, Plant Cell, Tissue and Organ Culture 64: 93-114.
  • Nevo, E., 1998. Genetic diversity in wild cereals: regional and local studies and their bearing on conservation ex situ and in situ. Genet. Res. and Crop Evol. 45:355-370.
  • Oldah H. K., D. Becker, and H. Lörz, 2001. Heterologous Expression of Genes Mediating Enhanced Fungal Resistance in Transgenic Wheat, Molecular Plant-Microbe Interactions, 7:832-838.
  • Özgen, M. ve S. Özcan, 1996. Bitki genetik mühendisliği. Kükem. 1: 69-95.
  • Phillips, L. 2006. Food globalization, Annu. Rev. Anthropol., 35:37-57.
  • Pilson, D. and H.R. Prendeville, 2004. Ecological effects of transgenic crops and the escape of transgenes into wild populations, Annu. Rev. Evol. Syst., 35:149-174.
  • Poehlman, J.M. and D. Sleper, 1995. Breeding field crops. 4th ed. Iowa State University Pres, Ames, IA.
  • Pope, K.O., M.E.D. Pohl, J.G. Jones, D.L. Lentz, C.V. Nagy, F.J. Vega, and I.R. Quitmyer, 2001. Origin and environmental setting of ancient agriculture in the lowlands of Mesoamerica. Science 292:1370-1373.
  • Potrykus, I., 2001. Turning point article “The Golden Rice” Tale, In Vitro Cell. Dev. Biol.- Plant 37:93-100.
  • Rajam, M.V., R. Kumria, and S. Singh, 2006. Molecular biology and genetic engineering in plants. Pp: 60-77, In: Plant Biotechnology and Molecular Markers, DOI: 10.2007/1- 4020-3213-7_5.
  • Repellin. A., M. Baga., P.P. Jauhar, and N.R. Chibbar, 2001. Genetic enrichment of cereal crops via alien gene transfer: New challenges, Plant Cell, Tissue and Organ Culture, 64:159-183.
  • Sauer, J., 1993. Historical geography of plants CRC Press, Boca Raton, FL.
  • Schmid, E. J, T. S. Burgos, M. M. Mesmer, and P. Stamp, 2000. Spelt (Triticum spelta L.) wheat a Genetic Resource for stress tolerance, Crop Development for the Cool and Wet Regions of Europe, Edited by Prente G. and J. Frame, Proc. of The Final Conference, EUR 19683, Pordenone, Italy.
  • Şehirali, S. ve M. Özgen, 2007. Bitki Islahı. Ankara Üniv. Zir. Fak. Yay., 1553/506, 270 sayfa, Ankara.
  • Tanksley, S., 1993. Mapping polygenes. Annu. Rev. Genet. 27:205-233.
  • Ulukan, H., 2005a. Tahıllarda In vitro Çalışmalar, Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, Hatay, Türkiye, 8:19–31.
  • Ulukan, H., 2005b. Ülkemizde bazı tahıl ve yemeklik tane baklagillerin tarımı: (1925– 2003), Hasad Dergisi (Bitkisel Üretim), 21:76-84.
  • Ulukan, H., 2006. Buğday’da pas hastalıklarına (Puccinia spp.) dayanıklılıkta yabani gen kaynakları, Hasad Dergisi (Bitkisel Üretim), 22:78–44.
  • Ulukan, H. ve E. Kün, 2007. Effect of between and on row distance of first development, tillering, yield and yield components in wheat cultivars (Triticum spp.), Pakistan J. of Biol. Sci., 10:4354-4364.
  • Ulukan, H., 2008a. Agronomic adaptation of some field crops: A general approach, J. of Agron. and Crop Sci., 194:169-179.
  • Ulukan, H., 2008b. The evolution of cultivated plant species: classical plant breeding versus genetic engineering, Plnt Sys and Evol., DOI:10 .1007/s00606-008-0118-8.
  • Wei, L., G. Guangqin and Z. Guochang, 2000. Agrobacterium-mediated transformation: state of the art and future prospect, Chinese Science Bulletin, 17:1537-1545.
  • Vavilov, N. I., 1951. The origin, variation, immunity and breeding of cultivated plants. Translated by Chester, K.S., Chron. Bot. Comp. 13: 366.
  • Willcox, G., 1998. Archaeobotanical evidence for the beginnings of agriculture in southwest Asia. pp: 25-38. In A. Damania et al. (ed.) The origins of agriculture and crop domestication. ICARDA, Aleppo, Syria.
  • Xiong, L., K. Liu, X. Dai, C. Xu, and Q. Zhang, 1999. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor. Appl. Genet. 98:243-251.
  • Ye, X., S. Al- Babill, A. Klötl, J. Zhang, P. Lucca, P. Beyer, and I. Potrykus, 2000. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303-305.