YÜKSEK BİNALARIN DİNAMİK TEPKİ ANALİZİ İÇİN DALGA YAYILIMININ İRDELENMESİ

Bu çalışmanın amacı, sismik dalga yayılımı olgusunu dikkate almanın yüksek binaların dinamik tepkisi üzerindeki etkisini sayısal olarak araştırmaktır. Bir çekirdek duvar ve bir çerçeve, dalga yayılımı olgusu göz önünde bulundurularak ve göz ardı edilerek sismik yükleme altında analiz edilmiştir. Analiz edilen her iki sistem için eğilme momenti, kesme kuvveti, eksenel kuvvet ve katlar arası ötelenme değerlendirilmiştir. Farklı katlardaki dinamik tepki için genlik Fourier tepki spektrumları da tartışılmıştır. Her biri kırk altı katlı, her iki sistem de sabit tabanda enine ve boyuna sismik dalgalara maruz bırakılmıştır. Sonuçlar, dalga yayılım fenomeni göz önüne alındığında, katlar arası sürüklenme, kesme kuvveti ve eğilme momentinde hafif bir azalma sağladığını göstermektedir. Dalga yayılım olgusunun dikkate alınmasının, özellikle üstteki üçüncü bölümün katlarındaki çekirdek duvar için eksenel kuvveti önemli ölçüde arttırdığı bulunmuştur. Bu makalenin ana katkısı, kategorize edilemeyen ve her farklı detayın farklı bir tepkiyi tetikleyebileceği "kod dışı" binalar olan yüksek binalarda dalga yayılımı olgusunu dikkate almaya yönelik büyük ihtiyacı vurgulamaktır. Daha da önemlisi, dalga yayılım fenomeninin temel fiziğini doğru bir şekilde yakalamak ve analizi hassas bir şekilde gerçekleştirmek için standart analiz ve tasarım mühendislik yazılımlarını yükseltme ihtiyacıdır.

Wave Propagation Approach for Dynamic Response Analysis of High-Rise Buildings

This paper numerically investigates the impact of considering the seismic wave propagation phenomenon on the dynamic response of high-rise buildings. A core wall and a frame are analyzed under seismic loading considering wave propagation phenomenon and ignoring it. The bending moment, shear force, axial force, and inter-story drift for both analyzed systems are evaluated. The amplitude Fourier response spectra for the dynamic response at different stories are discussed as well. Forty-six stories each, both systems are subjected to transverse and longitudinal seismic waves at the fixed base. The results show that considering the wave propagation phenomenon yields a slight decrease in the inter-story drift, shear force, and bending moment. It is found that considering wave propagation phenomenon increases the axial force significantly, especially for the core wall at the floors of the top third part. It is worth pointing out that high-rise buildings cannot be categorized, and every single different detail can trigger a different response. Thus, the main contribution of this paper is to highlight the drastic need to consider wave propagation phenomenon in such "out of code" buildings. The more important is a need to upgrade the standard analysis and design engineering packages to accurately capture the essential physics of the wave propagation phenomenon and perform the analysis precisely. 

___

  • 1. ALMahdi, F., Fahjan, Y., Doğangün, A. 2021. Critical remarks on Rayleigh damping model considering the explicit scheme for the dynamic response analysis of high rise buildings. Advances in Structural Engineering. https://doi.org/10.1177/1369433220988621
  • 2. Ebrahimian, M., Trifunac, M. D., Todorovska, M. I. 2016. Prediction of building response at any level from recorded roof response: The Kanai--Yoshizawa formula revisited. Soil Dynamics and Earthquake Engineering, 80:, 241–250. https://doi.org/10.1016/j.soildyn.2015.08.001.
  • 3. Ivanovic, S. S., Trifunac, M. D., Todorovska, M. D. 2001. On identification of damage in structures via wave travel times. Strong Motion Instrumentation for Civil Engineering Structures : Strong Motion Instrumentation for Civil Engineering Structures, Springer: , 447–467. DOI: 10.1007/978-94-010-0696-5_31.
  • 4. Kanai, K., Yoshizawa, S. 1963. Some new problems of seismic vibrations of a structure. Part 1. Bulletin of the Earthquake Research Institute, University of Tokyo, 41(4):, 825–833.
  • 5. Kawakami, Hideji, Oyunchimeg, M. 2003. Normalized input-output minimization analysis of wave propagation in buildings. Engineering Structures, 25(11):, 1429–1442. https://doi.org/10.1016/S0141-0296(03)00103-2
  • 6. Kawakami, H, Oyunchimeg, M., Tingatinga, E. A. J. 2005. Analysis of earthquake wave propagation in buildings. WIT Transactions on The Built Environment.
  • 7. ABAQUS/Standard User’s Manual, Version 6.9, Dassault Systemes Simulia, Corp, United States, 2009.
  • 8. Mehdi F. 2021. Dalga Yayılımının Yüksek Binaların Sismik Davranışına Olan Etkilerinin Sayısal Olarak İncelenmesi, Doktora Tezi, BUÜ Fen Bilimleri Enstitüsü, Bursa. (İkinci Danışman: Prof.Dr. Yasin FAHJAN)
  • 9. M. Çelebi, S. F. Ghahari, E. Taciroglu. 2016, Significance of beating observed in earthquake responses of buildings, in: Conference: 16th US-Japan-NZ Workshop on the Improvement of Structural Engineering and Resiliency.
  • 10. Michel, C., Gueguen, P. 2018. Interpretation of the velocity measured in buildings by seismic interferometry based on Timoshenko beam theory under weak and moderate motion. Soil Dynamics and Earthquake Engineering, 104:, 131–142. DOI:10.1016/J.SOILDYN.2017.09.031.
  • 11. Nakata, N., Snieder, R. 2014. Monitoring a building using deconvolution interferometry. II: Ambient-vibration analysis. Bulletin of the Seismological Society of America, 104(1):, 204–213. https://doi.org/10.1785/0120130050
  • 12. Nakata, N., Snieder, R., Kuroda, S., Ito, S., Aizawa, T., Kunimi, T. 2013. Monitoring a building using deconvolution Interferometry. I: Earthquake-data analysis. Bulletin of the Seismological Society of America, 103(3):, 1662–1678. https://doi.org/10.1785/0120120291
  • 13. PEERReport2013/24 2013. NGA-West2 Ground Motion Prediction Equations for Vertical Ground Motions.
  • 14. Rahmani, M., Todorovska, M. I. 2014. 1D System identification of a 54-story steel frame building by seismic interferometry. Earthquake Engineering and Structural Dynamics, 43(4):, 627–640. https://doi.org/10.1002/eqe.2364
  • 15. Safak, E. 1998a. New approach to analyzing soil-building systems. Soil Dynamics and Earthquake Engineering, 17(7–8):, 509–517. https://doi.org/10.1016/S0267-7261(98)00007-4.
  • 16. Şafak, E. 1998b. Propagation of seismic waves in tall buildings. The Structural Design of Tall Buildings, 7(4):, 295–306. https://doi.org/10.1002/(SICI)1099-1794(199812)7:4.
  • 17. Todorovska, M I, Trifunac, M. D. 1990. Propagation of Earthquake Waves in Buildings with Soft First Floor. Journal of Engineering Mechanics, 116(4):, 892–900. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:4(892)
  • 18. Todorovska, Marija I, Lee, V. W., Trifunac, M. D. 1988. Investigation of earthquake response of long buildings, University of Southern California, Department of Civil Engineering.
  • 19. Todorovskaa, M. I., IvanovicÂb, S. S., Trifunaca, M. D. 2001. Wave propagation in a seven-story reinforced concrete building II. Observed wavenumbersq. Soil Dynamics and Earthquake Engineering, 21(225):, 236. https://doi.org/10.1016/S0267-7261(01)00004-5
  • 20. Westergaard, H. M. 1933. Earthquake-shock transmission in tall buildings. Eng. News-Rec, 111.22:, 654–656.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ