Türkiye’deki Trombe Duvarı Sistemine ait Sayısal Isı Akısı Analizi

Tromb duvar, güneş enerjisinin depolanarak iç ortam sıcaklığının ilave enerji tüketimi gerektiren herhangi bir mekanik sisteme bağımlı kalmaksızın arttırılması için kullanılan pahalı olmayan bir pasif ısıtma sistemidir. Son zamanlarda ısı duvarının konfigürasyon ve enerji verimliliğine yönelik yapılan çalışmaların çoğu hesaplamalı akışkanlar dinamiği yardımıyla gerçekleştirilmiştir. Bunun sebeplerinden bir tanesi, bu programlarda cam ve akışkan alan çevresindeki yüzey sınır koşullarının temsil edildiği yarı geçirgen ve geçirimsiz duvarların kullanıcıya sağlanması ve enerjinin sadece yarı geçirgen duvarlar içerisinden geçebilmesine izin verilmesidir. Ancak, sonlu elemanlar metodu programlarında geçirimsiz duvar özelliklerine karşılık gelen ve enerjiyi ısı akısı şeklinde aktaran katı ve kabuk elemanlar kullanılabilmektedir. Bu çalışmada, daha önce deneysel bir çalışma kapsamında inşa edilmiş Tromb duvarı sistemine ait sayısal ısı akısı analizi gerçekleştirilmiş ve sayısal analiz deneysel analiz sonuçları ile doğrulanmıştır. Simülasyon çalışmalarına göre, güneş ışığı alması beklenen yüzeylere geçirgenlik katsayısına bağlı olarak hesaplanacak ilave güneş enerjisi tanımlanması halinde elde edilen sonuçların deneysel çalışmalarla örtüştüğü görülmüştür. Bununla birlikte, sayısal olarak doğrulanmış Tromb duvar modelinin kullanılarak Türkiye’deki üç farklı iklim bölgesine ait konut yapılarındaki enerji tasarruf potansiyelinin değerlendirilmesine yönelik bir çalışma yapılmıştır.

NUMERICAL HEAT FLUX ANALYSIS OF A TROMBE WALL SYSTEM IN TURKEY

Trombe wall is an inexpensive passive heating design method used for storing and utilizing solar energy to increase indoor temperature without relying on any mechanical system that requires additional energy. Most recent studies concerning solar wall configuration and energy efficiency have been conducted by using computational fluid dynamics. One reason for this is because semi-transparent and opaque boundaries are provided in simulating wall and glazing surfaces around the fluid domain and solar heat flux energy are allowed in through semi-transparent boundaries. However, finite element method programs employ solid and shell elements as opaque walls that transmit the energy into the domain. In this study, numerical heat flux analysis of a Trombe wall system, which was built for a previous experimental study, has been performed and numerical and experimental analysis results have been verified. According to the simulation studies, heat transfer analysis results are obtained in a good agreement with real time measurements when additional solar load calculated due to transmissivity are defined at the surfaces which are expected to be sun exposed. Besides, numerically verified model of the Trombe wall system was used in evaluating energy saving potential of residential buildings for three cities with different climate regions in Turkey.

___

  • 1. Gupta, N., and Tiwari, GN. (2016) Review of passive heating/cooling systems of buildings. Energy Science and Engineering, (4), 305-333. https://doi.org/10.1002/ese3.129
  • 2. Yilmaz, Z., and Kundakci, A.B. (2018) An Approach for energy conscious renovation of residential buildings in Istanbul by Trombe Wall system, Building and Environment, (43), 508-517. https://doi.org/10.3763/asre.2007.5041
  • 3. Stazi, F., Mastrucci, A., and Perna, C.D. (2012) The behavior of solar walls in residential buildings with different insulation levels: An experimental and numerical study, Energy and Buildings, (47), 217-229. https://doi.org/10.1016/j.enbuild.2011.11.039
  • 4. Gan, G. (1998) A parametric study of Trombe walls for passive cooling of buildings, Energy and Buildings, (27), 37-43. https://doi.org/10.1016/S0378-7788(97)00024-8
  • 5. Ozbalta, T.G., and Kartal, S. (2010) Heat gain through Trombe wall using solar energy in a cold region of Turkey, Scientific Research and Essays, (5), 2768-2778.
  • 6. Fang, X., and Li, Y. (2000) Numerical simulation and sensitivity analysis of lattice passive solar heating walls, Solar Energy, (69), 55-66. https://doi.org/10.1016/S0038-092X(00)00014-1
  • 7. Briga, A.S., Martins, A., Cunha, J.B., Lanzinha, J.C., and Paiva, A. (2014) Energy performance of Trombe walls: adaptation of ISO 13790:2008(E) to the Portuguese reality, Energy and Building, (74), 111-119. https://doi.org/10.1016/j.enbuild.2014.01.040
  • 8. Demirbilek, F.N., Yalciner, U.G., Ecevit, A., Sahmali, E., and Inanici, M. (2003) Analysis of the thermal performance of a building design located at 2465 m: Antalya- Saklikent National Observatory guesthouse, Building and Environment, (38), 177-184. https://doi.org/10.1016/S0360-1323(02)00015-X
  • 9. Xiong, Q., Alshehri, H. M., Monfaredi, R., Tayebi, T., Majdoub, F., Hajjar, A., ... & Izadi, M. (2021). Application of Phase Change Material in Improving Trombe Wall Efficiency: An up-to-date and Comprehensive Overview. Energy and Buildings, 111824. https://doi.org/10.1016/j.enbuild.2021.111824
  • 10. Duan, S., Li, H., Zhao, Z., & Wang, L. (2021). Investigation on heating performance of an integrated phase change material Trombe wall based on state space method. Journal of Energy Storage, 38, 102460. https://doi.org/10.1016/j.est.2021.102460
  • 11. Jaber, S., and Ajib, S. (2011) Optimum design of Trombe wall system in Mediterranean region, Solar Energy, (85), 1891-1898. https://doi.org/10.1016/j.solener.2011.04.025
  • 12. Kaya, E.S., Aksel, M., Yigitli, S., and Acikara, T.A. (2021) A numerical study on the effect of vent/Wall area ratio on Trombe Wall thermal performance, Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 1-14. https://doi.org/10.1680/jensu.20.00064
  • 13. ANSYS FLUENT. Theory Guide, ANSYS, Canonsburg PA, 2013.
  • 14. Liu, Y., Wang, D., Ma, C., and Liu, J.A. (2013) A numerical and experimental analysis of the air vent management and heat storage characteristics of a Trombe wall, Solar Energy, (91), 1-10. https://doi.org/10.1016/j.solener.2013.01.016
  • 15. Hernández, I.L., Xamán, J., Chávez, Y., Hernández, I.P., and Alvarado, R.J. (2016) Thermal energy storage and losses in a room-Trombe wall system located in Mexico, Energy, (109), 512-524. https://doi.org/10.1016/j.energy.2016.04.122
  • 16. Bajc, T., Todorovic, M.N., and Svorcan, J. (2015) CFD analyses for passive house with Trombe wall and impact to energy demand, Energy and Buildings, (98), 39-44. https://doi.org/10.1016/j.enbuild.2014.11.018
  • 17. Blotny, J., and Nems, M. (2019) Analysis of the impact of the construction of a Trombe wall on the thermal comfort in a building located in Wroclaw, Poland, Atmosphere, (10), 761-773. https://doi.org/10.3390/atmos10120761
  • 18. Simões, N., Manaia, M., and Simões, I. (2021). Energy performance of solar and Trombe walls in Mediterranean climates. Energy, 234, 121197. https://doi.org/10.1016/j.energy.2021.121197
  • 19. Zhou, A., Wong, K.W., and Lau, D. (2014) Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment, The Scientific World Journal, 279592. https://doi.org/10.1155/2014/279592
  • 20. Dimassi, N., and Dehmani, L. (2016) Experimental heat flux analysis of a solar wall design in Tunisia, Journal of Building Engineering, (8), 70-80. https://doi.org/10.1016/j.jobe.2016.10.001
  • 21. Yaylacı, M., and Avcar, M. (2020). Finite element modeling of contact between an elastic layer and two elastic quarter planes. Computers and Concrete, An International Journal, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107
  • 22. Yaylacı M., Adıyaman E., Öner E. and Birinci A., (2020). Examination of analytical and finite element solutions regarding contact of a functionally graded layer, Structural Engineering and Mechanics, 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325
  • 23. Ogus, G. (2013). Optimization of Trombe Wall Performance Using Computational Fluid Dynamics and Building Energy Simulation, MSc Dissertation, Istanbul Technical University.
  • 24. https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#MR , Erişim Tarihi: 09.01.2021, Konu: PGIS, Photovoltaic Geographical Information system, Average Solar Radiation Tool.
  • 25. Liu, B., and Jordan, R. (1961) Daily insolation on surfaces tilted towards the equator, ASHRAE Journal (10), 53-59.
  • 26. DIN 4701. (1980) Rules for calculating heating requirements of buildings (in German), Beuth Berlin.
  • 27. TS825. (2013) Thermal insulation requirements in buildings, Turkish Institute for Standards, Turkey.
  • 28. ANSI/ASHRAE Standard 55-2017. (2017)., Thermal Environmental Conditions for Human Occupancy, Atlanta, USA.
  • 29. https://www.epdk.gov.tr/Detay/Icerik/3-0-23/elektrikaylik-sektor-raporlar, Erişim Tarihi: 09.01.2021, Konu: EPDK, Republic of Turkish, Energy Market Regulatory Authority.
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ