Intraply Hibrid Karbon/Aramid Kompozit Malzemelerin Mekanik Özelliklerinin Değerlendirilmesi

Hibridizasyon, kompoziti oluşturan her bir takviye elemanının en iyi özelliklerini birleştirmek için çok işlevliliğin elde edilmesinde önemli bir uygulamadır. Bu çalışmada, karbon, aramid ve intraply karbon/aramid hibrit kumaşlar kullanılarak iki farklı üretim yöntemiyle (vakum destekli reçine transfer kalıplama yöntemi ve vakum torbalama yöntemi) hibrit kompozitler ve tek tip kompozitlerin mekanik özellikleri analiz edilmiştir. Matris elemanı olarak termoset reçinelerden epoksi reçine kullanılmıştır. Üretilen kompozit numunelerin mekanik (çekme testi, sertlik testi) ve morfolojik olarak analiz edilmesinin yanı sıra, intraply hibrit karbon/aramid kompozitlerin ve interply hibrit karbon ve aramid kompozitlerin üretiminde farklı üretim yöntemlerinin sonuçları nasıl etkilediği incelenmiştir. Sonuçlar, VABM (vakum torbalama yöntemi) ile yapılan üretimlerde, Intraply karbon/aramid hibrit numunelerin çekme dayanımı değerinin VARTM (vakum destekli reçine transfer kalıplama) ile yapılanlara göre 1,56 kat daha iyi olduğunu göstermektedir. Sertlik değerlerinin karşılaştırılmasında VARTM ile üretilen Intraply karbon/aramid hibrit numunelerin değerinde VABM ile yapılanlara göre 1,20 kat daha yüksek sonuçlar elde edilmiştir. Tek eksenli çekme testi sonrasında numunelerde SEM analizi kullanılarak lif kırılması, lif çekmesi ve kırılması gibi ara yüzey özellikleri belirlenmiş ve lif ara yüzeylerinin etkileşimlerinin numunelerin mekanik özelliklerini desteklediği tespit edilmiştir.

EVALUATION OF MECHANICAL PROPERTIES OF INTRAPLY HYBRID CARBON/ARAMID COMPOSITE MATERIALS

Hybridization is an important application in obtaining the multi-functionality to combine the best properties of each reinforcing element makes up the composite. In this study, hybrid composites and uniform composites were fabricated using carbon, aramid, and intraply carbon/aramid hybrid weaves with two different production methods (vacuum-assisted resin transfer molding process and vacuum bagging process). The mechanical properties of the produced hybrid composites and uniform composites were analyzed with respect to two different methods. Epoxy resin from thermoset resins was used as a matrix element. The composite samples produced were analyzed mechanically (tensile test, hardness test) and morphologically, as well as in the production of intraply hybrid carbon/aramid composites and interply hybrid Carbon and Kevlar composites, how different production methods affect the results. Results show in the productions made with VABM (vacuum bagging method), the tensile strength value of Intraply carbon/aramid hybrid samples was 1.56 times better than the ones made with VARTM (vacuum assisted resin transfer molding). In the comparison of hardness values, 1.20 times higher results were obtained in the value of Intraply carbon/aramid hybrid samples produced with VARTM compared to those made withVABM. Using SEM analysis, the interfacial properties such as fiber breakage, fiber shrinkage, and fracture were determined in the specimens after the uniaxial tensile test, and it was found that the interactions of the fiber interfaces support the mechanical properties of the specimens.

___

  • 1. Alsaadi, M., Erkliğ, A., and Abbas, M. (2020) Effect of Clay Nanoparticles on the Mechanical and Vibration Characteristics of Intraply Aramid/Carbon Fiber Reinforced Epoxy Composite, Polymer Composites, 41(7),2704–2712.
  • 2. Alsaadi, M. (2019) Hybridization Effects of S-glass fiber on Charpy impact resistance of carbon/aramid fiber reinforced epoxy composite laminates, Materials Research Express, 6(12),125342.
  • 3. ASTM D3039/D3039-M, (2000). Standard Test Method for Tensile Properties of Polymer Matrix Composite Material, ASTM, United States.
  • 4. ASTM E92-17, (2017). Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM, United States.
  • 5. Atlıhan, G., and Ergene, B. (2018) Vibration analysis of layered composite beam with variable section in terms of delamination and orientation angle in analytical and numerical methods, Acta Physica Polonica A, 134(1),13–17.
  • 6. Attia, M. A., Abd El-Baky, M. A., and Alshorbagy, A. E. (2017) Mechanical Performance of Intraply and Inter-Intraply Hybrid Composites Based on e-Glass and Polypropylene Unidirectional Fibers, Journal of Composite Materials, 51(3),381–394.
  • 7. Azimpour Shishevan, F. and Akbulut, H. (2019) Effects of Thermal Shock Cycling on Mechanical and Thermal Properties of Carbon/Basalt Fiber-Reinforced Intraply Hybrid Composites, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43(S1),441–449.
  • 8. Balasubramanian, M. (2014) Composite Materials and Processing, CRC Press, Boca Raton.
  • 9. Bandaru, A. K., Patel, S., Ahmad, S., and Bhatnagar, N. (2018) An Experimental and Numerical Investigation on the Low Velocity Impact Response of Thermoplastic Hybrid Composites, Journal of Composite Materials, 52(7),877–889.
  • 10. Bresciani, L. M., Manes, A., Ruggiero, A., Iannitti, G., and Giglio, M. (2016) Experimental Tests and Numerical Modelling of Ballistic Impacts against Kevlar 29 Plain-Woven Fabrics with an Epoxy Matrix: Macro-Homogeneous and Meso-Heterogeneous Approaches, Composites Part B: Engineering, 88,114–130.
  • 11. Bulut, M., Alsaadi, M., Erkliğ, A., and Alrawi, H. (2019) The Effects of S-Glass Fiber Hybridization on Vibration-Damping Behavior of Intraply Woven Carbon/Aramid Hybrid Composites for Different Lay-up Configurations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(9),3220–3231.
  • 12. Chamis, C., Lark, R., and Sinclair, J. (1979) Mechanical Property Characterization of Intraply Hybrid Composites, ASTM International, West Conshohocken.
  • 13. Da Cunha, R. D., da Cunha, R. A. D., de Amorim Junior, W. F., and Freire Júnior, R. C. S. (2020) Study of the Resistance Variation in Intraply/Yarn Kevlar/Glass Composite after Low-Velocity Impact, Journal of Materials Engineering and Performance, 29(8),5001–5007.
  • 14. Dehkordi, M. T., Nosraty, H., Shokrieh, M. M., Minak, G., and Ghelli, D. (2010) Low Velocity Impact Properties of Intra-Ply Hybrid Composites Based on Basalt and Nylon Woven Fabrics, Materials and Design, 31(8),3835–3844.
  • 15. Ergene, B. and Bolat, C. (2019) A Review on the Recent investigation trends in abrasive waterjet cutting and turning of hybrid composites, Sigma Journal of Engineering and Natural Sciences, 37(3),989–1016.
  • 16. Erklig, A., Dogan, N. F., and Bulut, M. (2017) On the Vibration Behavior of Intraply Woven Carbon / Kevlar Reinforced Composites with Nano Silica Particle, III. International Conference on Engineering and Natural Science, Budapest,1258–1262.
  • 17. Gokuldass, R., and Ramesh, R. (2019) Mechanical and Low Velocity Impact Behaviour of Intra-Ply Glass/Kevlar Fibre Reinforced Nano-Silica and Micro-Rubber Modified Epoxy Resin Hybrid Composite, Materials Research Express, 6(5),055302.
  • 18. Hashim, N., Majid, D., Baitab, D., Yidris, N., and Zahari, R. (2019) Tensile Properties of Woven Intra-Ply Carbon/Kevlar Reinforced Epoxy Hybrid Composite at Sub-Ambient Temperature, Encyclopedia of Materials: Composites, 766-773.
  • 19. Imielińska, K., Castaings, M., Wojtyra, R., Haras, J., Clezio, E. Le, and Hosten, B. (2004) Air-Coupled Ultrasonic C-Scan Technique in Impact Response Testing of Carbon Fibre and Hybrid: Glass, Carbon and Kevlar/Epoxy Composites, Journal of Materials Processing Technology, 157–158(SPEC. ISS.),513–522.
  • 20. Jesthi, D.K. and Nayak, R.K. (2019) Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application, Composites Part B: Engineering, 168, 467–475.
  • 21. Kang, K.W., Lim, D.M., and Kim, J.K. (2008) Probabilistic Analysis for the Fatigue Life of Carbon/Epoxy Laminates, Composite Structures, 85(3),258–264.
  • 22. Kar, K. K. (2017) Composite Materials, Springer, Berlin.
  • 23. https://www.kompozitshop.com/epoksi-recine-ve-sertlestirici, Access date:26.02.2021, Subject: Epoxy and Hardener.
  • 24. https://www.kompozitshop.com/karbon-fiber-elyaf-takviyeler-carbon, Access date: 26.02.2021, Subject: Carbon, Aramid and Intra-ply Carbon/Aramid.
  • 25. Mallick, P. K. (2007) Fiber-Reinforced Composites Materials, Manufacturing and Design, CRC Press, Boca Raton.
  • 26. Muhi, R. J., Najim, F., and de Moura, M. F. S. F. (2009) The Effect of Hybridization on the GFRP Behavior under High Velocity Impact, Composites Part B: Engineering, 40(8),798–803.
  • 27. Özbek, Ö., Bozkurt, Ö. Y., and Erkliğ, A. (2019) An Experimental Study on Intraply Fiber Hybridization of Filament Wound Composite Pipes Subjected to Quasi-Static Compression Loading, Polymer Testing, 79(May),106082.
  • 28. Pegoretti, A., Fabbri, E., Migliaresi, C., and Pilati, F. (2004) Intraply and Interply Hybrid Composites Based on E-Glass and Poly (Vinyl Alcohol) Woven Fabrics: Tensile and Impact Properties, Polymer International, 53(9),1290–1297.
  • 29. Potluri, R., Syam Dheeraj, R., and Vital, G. V. V. N. G. (2018) Effect of Stacking Sequence on the Mechanical and Thermal Properties of Hybrid Laminates, Materials Today: Proceedings, 5(2),5876–5885.
  • 30. Qing-dun, Z., Xiao-qing, H., and Xue-hui, L. (2001) Study on Stress Concentrations in an Intraply Hybrid Composite Sheet, Applied Mathematics and Mechanics, 22(2),154–159.
  • 31. Rajpurohit, A., Joannès, S., Singery, V., Sanial, P. and Laiarinandrasana, L. (2020) Hybrid effect in in-plane loading of carbon/glass fibre based inter-and intraply hybrid composites, Journal of Composites Science,4(1),6.
  • 32. Ruban Rajesekar, B., Asokan, R., Senbagan, B., Karthika, R., Sivajyothi, K. and Sharma, N. (2018) Evaluation on mechanical properties of intra-ply hybrid carbon-aramid/epoxy composite laminates, Materials Today: Proceedings, 5(11), 25323-25330.
  • 33. Sarasini, F., Tirillò, J., Ferrante, L., Sergi, C., Russo, P., Simeoli, G. Cimino, F., Ricciardi, M. and Antonucci, V. (2019) Quasi-Static and Low-Velocity Impact Behavior of Intraply Hybrid Flax/Basalt Composites, Fibers, 7(3),26.
  • 34. Sezgin, H. (2018) Investigation and Enhancement of The Mechanical Properties of the Fabric Reinforced Hybrid Composites, PhD Thesis, Istanbul Technical University, Istanbul.
  • 35. Sun, G., Tong, S., Chen, D., Gong, Z., and Li, Q. (2018) Mechanical properties of hybrid composites reinforced by carbon and basalt fibers, International Journal of Mechanical Sciences,148,636-651.
  • 36. Tehrani Dehkordi, M., Nosraty, H., Shokrieh, M. M., Minak, G., and Ghelli, D. (2013) The Influence of Hybridization on Impact Damage Behavior and Residual Compression Strength of Intraply Basalt/Nylon Hybrid Composites, Materials & Design, 43,283–290.
  • 37. Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., and Zainudin, E. S. (2016) Investigating Ballistic Impact Properties of Woven Kenaf-Aramid Hybrid Composites, Fibers and Polymers, 17(2),275–281.
  • 38. Yalcın, B. and Ergene B. (2018) Analyzing the Effect of Crack in Different Hybrid Composite Materials on Mechanical Behaviors, Pamukkale University Journal of Engineering Sciences,24(4),616-625.
  • 39. Yan, R., Wang, R., Lou, C.W., and Lin, J.-H. (2015) Low-Velocity Impact and Static Behaviors of High-Resilience Thermal-Bonding Inter/Intra-Ply Hybrid Composites, Composites Part B: Engineering, 6958–68.
  • 40. Yuhazri, M. Y., Amirhafizan, M. H., Abdullah, A., Sihombing, H., Nirmal, U., Saarah, A. B., and Fadzol, O. M. (2016) The Effect of Lamina Intraply Hybrid Composites on the Tensile Properties of Various Weave Designs, IOP Conference Series: Materials Science and Engineering, 160(1),012022.