DENEYSEL TASARIM İLE SULU ÇÖZELTİLERDEN METAL AYRIŞIMINA ETKİ EDEN FAKTÖRLERİN OPTİMİZASYONU

Deneysel tasarım endüstri ve kimya sanayisini de kapsayan çok çeşitli alanlarda kullanılmaktadır. Bu çalışmada deneysel tasarım ve cevap yüzeyi metodu sulu çözeltilerden kadmiyum iyonlarının ayrıştırılmasını etkileyen faktörlerin incelenmesinde kullanılmıştır. Kadmiyum iyonlarının ayrıştırılmasını etkileyen faktörler pH, başlangıç metal konsantrasyonu ve çözelti sıcaklığı olarak belirlenmiştir. Deneylerde kullanılan aktive edilmiş karbonlar, kimyasal ve fiziksel aktivasyon metotlarıyla Tunçbilek linyitinden elde edilmiştir. Deneysel tasarım ile faktörler analiz edilmiş ve önem seviyeleri belirlenmiştir. Ele alınan faktörlerin etkileri ve birbirleriyle etkileşimleri varyans analizi yöntemiyle ortaya çıkarılmıştır. Regresyon analiziyle birlikte cevap yüzeyi metodundan da yararlanarak deney limitleri içinde en iyi kadmiyum ayrışımını sağlayacak optimum koşullar belirlenmiştir.

Optimization of Metal Removal Factors Using Experimental Design

Experimental design methodology has been used in various research areas including industrial and chemical engineering. In this paper, factor analysis and response surface optimization approaches were used for cadmium removal from aqueous solutions. The factors affecting removal of Cd ions from aqueous solutions were investigated depending on pH, initial metal concentration and solution temperature. Activated carbon used in the experiments was produced from Tunçbilek lignite by physical activation method. The analysis of important factors is established by using the design of experiments method. The effect and the interaction among the investigated factors are evaluated using the analysis of variance method. Together with regression analysis, response surface optimization is also utilized to obtain optimum conditions for best copper removal within the experimental limits.

___

  • 1. Allen, S. J., Murray, M., Brown, P., Flynn, O. (1994). Peat as an adsorbent for dyestuffs and metals in wastewater, Resources, Conservation and Recycling, 11, 25–39.
  • 2. Can, B., Heavey, C. (2011). Comparison of experimental designs for simulation-based symbolic regression of manufacturing systems, Computers & Industrial Engineering, Vol.61(3), 447–462, http://dx.doi.org/10.1016/j.cie.2011.03.01.
  • 3. Gherbi, N., Meniai, A.-H., Bencheikh-Lehocine, M., Mansri, A., Morcellet, M., Bellir, K., Bacquet, M., Martel, M. (2004). Study of The Retention Phenomena of Copper II by Calcinated Wheat Byproducts, Desalination, 166, 363–369.
  • 4. Karatepe, N, Orbak, I, Yavuz, R, Özyuğuran, A. (2008). Sulfur dioxide adsorption by activated carbons having different textural and chemical properties, Fuel, 87, 3207–3215.
  • 5. Monser, L., Adhoum, N. (2002). Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater, Separation and Purification Technology, 26, 137– 146.
  • 6. Montgomery, D.C. (2008). Design and Analysis of Experiments, Wiley 7th edition, New York.
  • 7. Netzer, A., Hughs, D.E. (1984). Adsorption of Cr, Pb and Co by activated carbon, Water Res., 18, 927–933.
  • 8. Ornek, M. A., Ekren, B. Y. (2008). A simulation based experimental design to analyze factors affecting production flow time, Simulation Modelling Practice and Theory, Vol. 16(3), 278– 29, http://dx.doi.org/10.1016/j.simpat.2007.11.016.
  • 9. Pattanayak, J., Mondal, K., Mathew, S., Lalvani, S.B. (2000). A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents, Carbon, 38, 589–596.
  • 10. Rios, J.V., Bess-Oberto, L., Tiemann, K.J., Gardea-Torresdey, J.L. (1999). Investigation of Metal ion Binding by Agricultural By-Products, Proceedings of the International Conference on Hazardous Waste Research, 125.
  • 11. Zang, H.M., Fu, R.W. (1989). Removal of metal ions by activated carbon, Technology Water Treatment, 15, 132–136.