AISI 1050 ÇELİĞİ ÜZERİNE INCONEL 718 LAZER DOLGU KAYNAĞININ MORFOLOJİSİ, MİKROYAPISI VE MEKANİK KARAKTERİZASYONU

Bu çalışma kapsamında, Inconel 718 tozunun AISI 1050 imalat çeliği üzerine lazerle dolgu kaynağı işlemi uygulandı. Bu işlem sırasında, dispersiyonun mekanik özellikler üzerindeki etkisini analiz etmek için, ilgili parametrelerde üretilen numuneler üzerinde ampirik bir çalışma gerçekleştirildi. Sonuçlar, kopma gerilmesi ve süneklik için yüksek sapmalar olduğunu göstermektedir. Bu dağılım, biriken malzemede gözenekliliğin varlığından kaynaklanmaktadır. Ayrıca, en iyi sonuçlar merkez bölgedeki numunelerden alınırken, dış bölgelerden alınan numuneler üzerinde yapılan testler kopma gerilmesi ve süneklik için daha düşük değerler göstermiştir. Bunun yanında sertlik değerleri incelendiğinde ısıdan etkilenen bölgenin ana malzemeden daha sert olduğu ve bu da ısıdan etkilenen bölgenin soğuma hızından kaynaklandığı görülmüştür. Buna ilaveten de Laves fazı, zamanla kırılmaya yol açan mikro boşlukların üretilmesinin ana nedeni olduğu anlaşılmıştır.

Morphology, Microstructure and Mechanical Characterization of Inconel 718 Laser Cladding Application on AISI 1050 Steel

Within the scope of this study, Laser Cladding of Inconel 718 powder was applied on AISI 1050 fabrication steel. During this process, to analyze the effect of dispersion on mechanical properties, an empirical study was carried out on the samples produced at the relevant parameters. The results show high deviations for breaking stress and ductility. This distribution is due to the presence of porosity in the deposited material. Also, the best results were obtained from the samples in the central region, while the tests performed on the samples from the outer regions showed lower values for breaking stress and ductility. In addition, when the hardness values were examined, it was seen that the heat-affected area was harder than the base material and this was due to the cooling rate of the heat-affected area. In addition, the Laves phase was found to be the main cause of the generation of micro-voids that lead to fracture over time.

___

  • 1. Alizadeh-Sh, M., Marashi, S.P.H., Ranjbarnodeh, E., Shoja-Razavi, R. ve Oliveira, J.P. (2020) Prediction of solidification cracking by an empirical-statistical analysis for laser cladding of Inconel 718 powder on a non-weldable substrate. Optics & Laser Technology, 128, 106244. doi:10.1016/J.OPTLASTEC.2020.106244
  • 2. Aydin, H., Altay, M., Karşi, A., Ergin, D., Onayli, A. ve Bayram, A. (2022) Effect of Laser Cladding Parameters in Laser Direct Metal Deposition (LDMD) of Martensitic Stainless Steel Powder on Ductile Cast Iron. Lasers in Engineering, 52(3), 87–106.
  • 3. Aydogan, B., O’Neil, A. ve Sahasrabudhe, H. (2021) Microstructural and mechanical characterization of stainless steel 420 and Inconel 718 multi-material structures fabricated using laser directed energy deposition. Journal of Manufacturing Processes, 68(PA), 1224–1235. doi:10.1016/j.jmapro.2021.06.031
  • 4. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A. ve Zhang, W. (2018) Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 92, 112–224. doi:10.1016/J.PMATSCI.2017.10.001
  • 5. Gao, Z., Wang, L., Wang, Y., Lyu, F. ve Zhan, X. (2022) Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding. Journal of Alloys and Compounds, 903, 163905. doi:10.1016/J.JALLCOM.2022.163905
  • 6. Ilanlou, M., Shoja Razavi, R., Nourollahi, A., Hosseini, S. ve Haghighat, S. (2022) Prediction of the geometric characteristics of the laser cladding of Inconel 718 on the Inconel 738 substrate via genetic algorithm and linear regression. Optics & Laser Technology, 156, 108507. doi:10.1016/J.OPTLASTEC.2022.108507
  • 7. Jelvani, S., Shoja Razavi, R., Barekat, M., Dehnavi, M. R. ve Erfanmanesh, M. (2019) Evaluation of solidification and microstructure in laser cladding Inconel 718 superalloy. Optics & Laser Technology, 120, 105761. doi:10.1016/J.OPTLASTEC.2019.105761
  • 8. Poloczek, T., Lont, A. ve Górka, J. (2022) The structure and properties of laser-cladded Inconel 625/TiC composite coatings. Materials, 16(3), 1265. doi: 10.3390/ma16031265
  • 9. Kang, L., Chen, F., Wu, B., Liu, X. ve Ge, H. (2022) Mechanical properties and microstructure of laser-cladding additively manufactured 316L stainless steel sheets. Journal of Constructional Steel Research, 199, 107603. doi:10.1016/J.JCSR.2022.107603
  • 10. Lambarri, J., Leunda, J., García Navas, V., Soriano, C. ve Sanz, C. (2013) Microstructural and tensile characterization of Inconel 718 laser coatings for aeronautic components. Optics and Lasers in Engineering, 51(7), 813–821. doi:10.1016/j.optlaseng.2013.01.011
  • 11. Lee, K.K., Kim, H.S., Ahn, D.G. ve Lee, H. (2022) Thermo-mechanical characteristics of inconel 718 layer deposited on AISI 1045 steel substrate using a directed energy deposition process. Journal of Materials Research and Technology, 17, 293–309. doi:10.1016/j.jmrt.2021.12.112
  • 12. Lu, S., Zhou, J., Wang, L. ve Liang, J. (2021) Influence of MoSi2 on the microstructure and elevated-temperature wear properties of Inconel 718 coating fabricated by laser cladding. Surface and Coatings Technology, 424(August), 127665. doi:10.1016/j.surfcoat.2021.127665
  • 13. Muvvala, G., Mullick, S. ve Nath, A.K. (2020) Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surface and Coatings Technology, 399, 126100. doi:10.1016/J.SURFCOAT.2020.126100
  • 14. Ning, J., Zhang, H.B., Chen, S. M., Zhang, L.J. ve Na, S.J. (2021) Intensive laser repair through additive manufacturing of high-strength martensitic stainless steel powders (I) –powder preparation, laser cladding and microstructures and properties of laser-cladded metals. Journal of Materials Research and Technology, 15, 5746–5761. doi:10.1016/J.JMRT.2021.10.109
  • 15. Qi, H., Azer, M. ve Ritter, A. (2009) Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 40(10), 2410–2422. doi:10.1007/s11661-009-9949-3
  • 16. Shayanfar, P., Daneshmanesh, H. ve Janghorban, K. (2020) Parameters Optimization for Laser Cladding of Inconel 625 on ASTM A592 Steel. Journal of Materials Research and Technology, 9(4), 8258–8265. doi:10.1016/j.jmrt.2020.05.094
  • 17. Thawari, N., Gullipalli, C., Katiyar, J.K. ve Gupta, T.V.K. (2021) Effect of multi-layer laser cladding of Stellite 6 and Inconel 718 materials on clad geometry, microstructure evolution and mechanical properties. Materials Today Communications, 28, 102604. doi:10.1016/J.MTCOMM.2021.102604
  • 18. Wang, C., Zhou, J., Zhang, T., Meng, X., Li, P. ve Huang, S. (2022) Numerical simulation and solidification characteristics for laser cladding of Inconel 718. Optics & Laser Technology, 149, 107843. doi:10.1016/J.OPTLASTEC.2021.107843
  • 19. Wolff, S.J., Gan, Z., Lin, S., Bennett, J.L., Yan, W., Hyatt, G., Ehmann, K.F., Wagner, G.J., Liu, W.K. ve Cao, J. (2019) Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel. Additive Manufacturing, 27, 540–551. doi:10.1016/j.addma.2019.03.019
  • 20. Xu, D., Wang, H., Tao, X., Yao, Z., Zhang, S. ve Oleksander, M. (2021) Investigation on Microstructure, Hardness and Wear Resistance of Electron Beam Wire-Feeding Deposited Inconel 718 Alloy Coatings. Metals and Materials International, 27(5), 1263–1272. doi:10.1007/s12540-019-00494-x
  • 21. Mathoho, I., Akinlabi, E.T., Arthur, N. ve Tlotleng, M. (2020) Impact of DED process parameters on the metallurgical characteristics of 17-4 PH SS deposited using DED. CIRP Journal of Manufacturing Science and Technology, 31, 450–458. doi:10.1016/j.cirpj.2020.07.007
  • 22. Zeng, X., Wang, Q., Chen, C., Lian, G. ve Huang, X. (2021) Effects of WC addition on the morphology, microstructure and mechanical properties of Fe50/TiC/WC laser claddings on AISI 1045 steel. Surface and Coatings Technology, 427(September), 127781. doi:10.1016/j.surfcoat.2021.127781
  • 23. Zhang, J., Meng, G., Zhu, L., Yang, Z., Xue, P. ve Xu, P. (2022) Formation mechanism and mechanical properties of TiC reinforced Inconel 718 composite coatings by laser cladding on H13 steel. International Journal of Advanced Manufacturing Technology, 121, 3597–3611. doi:10.1007/s00170-022-09545-x
  • 24. Zhang, Y., Li, Z., Nie, P. ve Wu, Y. (2013) Effect of heat treatment on niobium segregation of laser-cladded IN718 alloy coating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 44(2), 708–716. doi:10.1007/s11661-012-1459-z
  • 25. Zhou, S., Xu, T., Hu, C., Wu, H., Liu, H. ve Ma, X. (2021) Effect of different topologies on microstructure and mechanical properties of multilayer coatings deposited by laser cladding with Inconel 625 wire. Surface and Coatings Technology, 421(April), 127299. doi:10.1016/j.surfcoat.2021.127299
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi-Cover
  • ISSN: 2148-4147
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2002
  • Yayıncı: BURSA ULUDAĞ ÜNİVERSİTESİ > MÜHENDİSLİK FAKÜLTESİ