Karma Üretim Sistemlerinde Karbon Salınımı Faktörünün Üretim ve Stok Kontrolüne Etkileri

Kıt kaynaklar, yoğun rekabet ortamı ve yasal düzenlemeler gerek işletmeler gerekse toplum tarafından sürdürülebilirlik konusuna olan ilgiyi arttırmaktadır. Geri dönüşüm, yeniden kullanım ve yeniden üretim sürdürülebilirliğin üretim sistemlerine katıldığı yöntemlerin başında gelmektedir. Bu çalışma karma üretim sisteminde karbon salınımı faktörünün üretim ve stok kararlarına olan etkisini belirlemeyi amaçlamaktadır. Karma üretim sistemi için iki farklı hazırlık süreci dikkate alınmıştır; normal ve yeniden üretim için ayrı hazırlık süreci veya ortak hazırlık süreci bulunmaktadır. Ele alınan problemin çözümü için karma tam sayılı programlama modeli önerilmiştir. Örnek olay ve duyarlılık analizlerin sonuçlarına göre, karbon salınımı her iki üretim sistemlerinin toplam maliyet performansını dikkate değer oranda etkilemektedir.

The Effects of Carbon Emission on Production and Inventory Control in Hybrid Production Systems

Scarce resources, highly competitive environment and legal regulations increase the interest in sustainability issue from both companies and public. Recycling, reuse and remanufacturing are leading approaches to incorporate sustainability into production systems. This study aims to determine the effect of carbon emission on production and inventory decisions in hybrid production systems. Two different setup processes are considered for hybrid production system; there are separate setup or joint setup processes for production and remanufacturing. A mixed-integer linear programming has been proposed to solve the considered problem. According to the results of the base case and the sensitivity analysis, carbon emission considerably affects the total costs performance of both production systems.

___

  • 2019 UK Automotive Sustainability Report, Technical report. https://www.smmt.co.uk/reports/sustainability/, online accessed: 25.02.2020.
  • Ahiska, S. S., & King, R. E. (2010). Life cycle inventory policy characterizations for a singleproduct recoverable system. International Journal of Production Economics, 124(1), 51-61.
  • Akçalı, E., & Çetinkaya, S. (2011). Quantitative models for inventory and production planning in closed-loop supply chains. International Journal of Production Research, 49(8), 2373-2407.
  • Ayres, R., Ferrer, G., & Van Leynseele, T. (1997). Eco-efficiency, asset recovery and remanufacturing. European Management Journal, 15(5), 557-574.
  • Bayındır, Z. P., Erkip, N., & Güllü, R. (2007). Assessing the benefits of remanufacturing option under one-way substitution and capacity constraint. Computers & Operations Research, 34(2), 487-514.
  • Carbon Tax Center (2020). Where Carbon Is Taxed, https://www.carbontax.org/where-carbon-istaxed, online accessed: 25.02.2020.
  • CAT REMAN (2020), https://www.caterpillar.com/en/brands/cat-reman.html, online accessed: 25.02.2020.
  • Chan, F. T., Li, N., Chung, S. H., & Saadat, M. (2017). Management of sustainable manufacturing systems-a review on mathematical problems. International Journal of Production Research, 55(4), 1210-1225.
  • Cunha, J. O., & Melo, R. A. (2016). A computational comparison of formulations for the economic lot-sizing with remanufacturing. Computers & Industrial Engineering, 92, 72- 81.
  • García-Alvarado, M. S., Paquet, M., & Chaabane, A. (2015). On inventory control of product recovery systems subject to environmental mechanisms. International Journal of Production Economics, 165, 132-144.
  • Hatcher, G. D., Ijomah, W. L., & Windmill, J. F. C. (2011). Design for remanufacture: A literature review and future research needs. Journal of Cleaner Production, 19(17-18), 2004-2014.
  • Heisig, G., & Fleischmann, M. (2001). Planning stability in a product recovery system. ORSpektrum, 23(1), 25-50.
  • HPA (2011). Impact on health of emissions from landfill sites. Technical Report, Health Protection Agency.
  • Ilgin, M. A., & Gupta, S. M. (2010). Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. Journal of Environmental Management, 91(3), 563-591.
  • Inderfurth, K. (1997). Simple optimal replenishment and disposal policies for a product recovery system with leadtimes. Operations-Research-Spektrum, 19(2), 111-122.
  • Junior, M. L., & Filho, M. G. (2012). Production planning and control for remanufacturing: literature review and analysis. Production Planning & Control, 23(6), 419-435.
  • Karakayali, I., Akçalı, E., Çetinkaya, S., & Üster, H. (2013). Capacitated replenishment and disposal planning for multiple products with resalable returns. Annals of Operations Research, 203(1), 325-350.
  • Kiesmüller, G. P. (2003). A new approach for controlling a hybrid stochastic manufacturing/remanufacturing system with inventories and different leadtimes. European Journal of Operational Research, 147(1), 62-71.
  • Kilic, H. S., Cebeci, U., Ayhan, M. B., 2015. Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey. Resources, Conservation and Recycling 95, 120-132.
  • Macedo, P. B., Alem, D., Santos, M., Junior, M. L., & Moreno, A. (2016). Hybrid manufacturing and remanufacturing lot-sizing problem with stochastic demand, return, and setup costs. The International Journal of Advanced Manufacturing Technology, 82(5-8), 1241-1257.
  • Miao, Z., Mao, H., Fu, K., & Wang, Y. (2018). Remanufacturing with trade-ins under carbon regulations. Computers & Operations Research, 89, 253-268.
  • Teunter, R. H., & Vlachos, D. (2002). On the necessity of a disposal option for returned items that can be remanufactured. International Journal of Production Economics, 75(3), 257- 266.
  • Teunter, R. (2004). Lot-sizing for inventory systems with product recovery. Computers & Industrial Engineering, 46(3), 431-441.
  • Teunter, R. H., Bayindir, Z. P., & Den Heuvel, W. V. (2006). Dynamic lot sizing with product returns and remanufacturing. International Journal of Production Research, 44(20), 4377- 4400.
  • Thierry, M., Salomon, M., Van Nunen, J., & Van Wassenhove, L. (1995). Strategic issues in product recovery management. California Management Review, 37(2), 114-136.
  • Van der Laan, E., & Salomon, M. (1997). Production planning and inventory control with remanufacturing and disposal. European Journal of Operational Research, 264-278.
  • Van der Laan, E., Salomon, M., & Dekker, R. (1999). An investigation of lead-time effects in manufacturing/remanufacturing systems under simple PUSH and PULL control strategies. European Journal of Operational Research, 115(1), 195-214.
  • Van der Laan, E. A., & Teunter, R. H. (2006). Simple heuristics for push and pull remanufacturing policies. European Journal of Operational Research, 175(2), 1084-1102.
  • Wang, X., Zhu, Y., Sun, H., & Jia, F. (2018). Production decisions of new and remanufactured products: Implications for low carbon emission economy. Journal of Cleaner Production, 171, 1225-1243.
  • Waste Electrical & Electronic Equipment (WEEE), (2020). https://ec.europa.eu/environment/ waste/weee/, online accessed: 25.02.2020.
  • Yenipazarli, A. (2016). Managing new and remanufactured products to mitigate environmental damage under emissions regulation. European Journal of Operational Research, 249(1), 117-130.