VALLEY MORPHOMETRY AND VALLEY INCISION RATE

Fluvial processes, one of the main actors in the development of the geomorphologic structure, are reflected most saliently by valleys in topographic surfaces. Analyses focusing on valley morphometry that present concrete and accurate data in terms of both existing geometries and formation and development processes play a significant part in explaining geomorphologic properties especially in fluvial morphogenetic regions. Unfavorable aspects such as the insufficiency of existing analysis methods in generating real values and impossibility of conducting process-based analysis have created barriers to achieve the expected success in comprehending valley morphometry. Therefore, in order to eliminate this shortcoming, this study established a methodology by identifying the problems to enlighten which parameters should be placed in what parts of the equation by citing how the parameters should be measured in order to ensure the generation of desired data on both analog and digital data bases. This methodological approach, expressed more clearly and comprehensibly with the help of illustrations and mathematical formulas, was finalized by correlating it with the elements and parameters with counterparts in the concrete field data. As a result, while it was possible to examine concrete quantities in valleys related to length, area and volume based on amount and ratio without limitations on area and section; it was also possible to present a methodological framework that allows process analysis in terms of the operations of the fluvial process and developmental course of the geo-morphological structure.

VADİ MORFOMETRİSİ VE VADİ KAZILIM ORANI

Jeomorfolojik yapının gelişimindeki başlıca aktörlerden olan flüvyal süreçlerin topografik satıhtaki en belirgin yansımasını vadiler temsil eder. Gerek mevcut geometrilerine gerekse oluşum ve gelişim süreçleri bakımından somut ve doğru verilerin ortaya konacağı vadi morfometrisine odaklanmış analizler, özellikle flüvyal morfojenetik bölgeler için jeomorfolojik özelliklerin açıklanmasında büyük pay sahibidir. Kullanılmakta olan analiz yöntemlerinin özellikle reel veriler üretilmesi konusunda bazı yetersizlikler barındırması ve süreç bazlı tahlillere imkân vermemesi gibi olumsuzluklar vadi morfometrisinin anlaşılmasında istenilen başarının elde edilmesine mani olmaktadır. Bu durumun ortadan kaldırılabilmesi için çalışmanın ana çerçevesinde, eksikliklerin belirlenerek ihtiyaç duyulan verilerin hem analog hem de dijital veri tabanları üzerinden üretilebilmesi için hangi parametrelerin ne şekilde ölçülerek denklemin neresine yerleştirileceği hususlarına ışık tutan bir metodoloji inşa edilmiştir. Bu kapsamda karmaşık bir geometriye sahip olan topografik satıh, daha anlaşılır kılınması için eşdeğeri olacak basit bir üçgen pirizmaya modellenerek uzunluk, alan ve hacim açısından kolayca hesaplanabilecek geometriye indirgenmiştir. İllüstrasyonlar ve matematiksel formüller marifetiyle daha açık ve anlaşılır bir ifadeye kavuşturulan söz konusu metodolojik yaklaşım, somut saha verilerindeki karşılığı olan unsur ve parametrelerle bağdaştırılarak son şekline kavuşturulmuştur. Çalışmanın nihayetinde vadilerde alan ve bölüm kısıtlaması olmaksızın mevcut geometrideki uzunluk, alan ve hacme dair somut niceliklerin miktar ve oran bazlı tetkiki sağlandığı gibi, flüvyal sürecin işleyişi ve jeomorfolojik yapının gelişme seyri bakımından da vetire analizi yapmaya imkân sunacak bir metodolojik çerçeve ortaya konmuştur.

___

Akziz, D., Guendouz, M., Guettouche, M. S. & Khelil, T. (2018). The Mazafran river (western Sahel of Algiers): superimposition or antecedence? Arabian Journal of Geosciences, 11: 121.

Ayaz, S., Biswas, M. & Md Kutubuddin, D. (2018). Morphotectonic analysis of alluvial fan dynamics: comparative study in spatio-temporal scale of Himalayan foothill, India. Arabian Journal of Geosciences, 11: 41.

Beaumont, C., Fullsack, P. & Hamilton, J. (1992). Erosional control of active compressional orogens. In Thrust Tectonics, edt. K. McClay, 377–390, Chapman and Hall, London.

Beaumont, P. (1972). Alluvial fans along the foothills of the Elburz Mountains, Iran: Palaeogeography, Palaeoclimatology, Palaeoecology, 12, 251–273.

Brocard, G. Y., Van Der Beek, P. A., Bourles, D. L., Siame, L. L. & Mugnier, J. L. (2003). Longterm fluvial incision rates and postglacial river relaxation time in the French Western Alps from 10Be dating of alluvial terraces with assessment of inheritance, soil development and wind ablation effects. Earth and Planetary Science Letters: 209, 197–214.

Bull W. B. (1961). Tectonic significance of radial profiles of alluvial fans in Western Fresno County California. US, Geological Survey Professional Paper 424-B. Short Papers in the Geologic and Hydrological Sciences B; 182–184.

Bull, W. B. (1962). Relations of alluvial-fan size and slope to drainage-basin size and lithology in western Fresno County, California: U.S. Geological Survey Professional Paper 424-B, 51–53.

Chatanantavet, P. & Parker, G. (2009). Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion, J. Geophys. Res., 114, F04018.

Cowie, P. A., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas, A. & Roberts, G. P. (2006). Investigating the surface process response to fault interaction and linkage using a numerical modeling approach: Basin Research: 18, 231–266.

Davies, D. (2014). Cambridge IGCSE Geography Revision Guide. Cambridge University Press, Cambridge, United Kingdom.

Demoulin, A. (2011). Basin and river profile morphometry: A new index with a higy potential for relative dating and tectonic uplift. Geomorphology: 126, 97–107.

Denny, C. S. (1965). Alluvial Fans in the Death Valley Region, California and Nevada, United States Geological Survey, Professional Paper, 466.

Denny, C.S. (1967). Fans and pediments: American Journal of Science, v. 265, p. 81–105.

Doornkamp, J. C. & Cuchlaine, A. M. K. (1971). Numerical Analysis in Geomorphology. An Introduction. Edward Arnold, London.

Dotterweich, M., Rodzik, J., Zgłobicki, W. & Schmitt, A. (2012). High resolution gully erosion and sedimentation processes, and land use changes since the Bronze Age and future trajectories in the Kazimierz Dolny area (Nałęczów Plateau, SE-Poland). Catena: 95, 50–62.

Eagleson, P. S. (1970). Dynamic Hydrology, McGraw-Hill, New York, USA.

Ekinci, D. & Karataş, A. (2013). The Effect of Tectonic and Lithological Structure on Longitudinal Valley Profiles in the Kaz Mountains. The 2nd International Symposium on Kaz Mountains (Mount Ida) and Edremit Human - Environment Interactions and Ecology of Mountain Ecosystems Proceedings & Abstract. (Edts. Recep Efe, İbrahim Atalay, Münir Öztürk), 453– 466. Meta Basım, İzmir.

Erinç, S. (2000). Jeomorfoloji I. Güncelleştirilmiş 5. Basım, Güncelleştirenler: Ahmet Ertek, Cem Güneysu. Der Yayınları, İstanbul.

Frankl, A., Poesen, J., Deckers, J., Haile, M. & Nyssen, J. (2012). Gully head retreat rates in the semiarid highlands of Northern Ethiopia. Geomorphology: 173-174, 185–195.

Fuchs, M. C., Gloaguen, R., Krbetschek, M. & Szulca, A. (2014). Rates of river incision across the main tectonic units of the Pamir identifed using optically stimulated luminescence dating of fluvial terraces. Geomorphology: 216, 79–92.

Hack, J. T. (1957). Studies in Longitudinal Stream Profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper 249-B, 45–97.

Hack, J. T. (1973). Stream Profile Analysis and Stream-Gradient Index. U.S. Geological Survey Journal of Research, 1, 421–429.

Harvey, A. M. (1987). Alluvial fan dissection: Relationships between morphology and sedimentation, in Frostick, L.E, and Reid, I., eds., Desert sediments: Ancient and modern: Geological Society of London Special Publication 35, p. 87–103.

Horton, R. E. (1932). Drainage Basin Characteristics. Transaction of American Geological Union, 13, 350–361.

Horton, R. E. (1945). Erosional Development of Streams and Their Drainage Basins: Hydrophysical Approach to Quantitative Morphology. Bulletin of the Geological Society of America 56, 275– 370.

Hoşgören, Y. (2004). Hidrografya’nın Ana Çizgileri I Yeraltısuları-Kaynaklar-Akarsular. 5. Baskı. Çantay Kitabevi, İstanbul.

Hoşgören, Y. (2011). Jeomorfoloji Terimleri Sözlüğü. Çantay Kitabevi, İstanbul.

Kaiser, A., Neugirg, F., Rock, G., Mueller, C., Haas, F., Ries, J., & Schmidt, J. (2014). Small- Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Moroccan Gully Morphology Using Structure from Motion. Remote Sensing: 6, 7050–7080.

Karataş, A. & Ekinci, D. (2014). Akarsu vadilerinde dizi ve havza bazlı yatak eğimi hesaplamaları.

TÜCAUM VIII. Coğrafya Sempozyumu 23–24 Ekim 2014 Bildiriler Kitabı, 13–21. Ankara.

Karataş, A. & Ekinci, D. (2014). Interpretation of The Morphological Characteristic of Şehir Creek Basin (İspir) Regarding Fluvial Geomorphology and Regional Tectonics. Procedia - Social and Behavioral Sciences 120 (2014) 576–585.

Karataş, A. (2015). Akarsu havzalarında asimetrik yapı. UJES 2015, IV. Ulusal Jeomorfoloji Sempozyumu 15–17 Ekim 2015 Bildiriler Kitabı (Edt. Muhammet Bahadır, Ali Uzun & Halil İbrahim Zeybek), 263–273. Samsun.

Karataş, A. (2017). Karasu Çayı Havzasının Hidrografik Planlaması. Çantay Kitabevi, İstanbul.

Karataş, A., Sungur, Ş. & Yılmaz, V. (2016). “Physico-Chemical Features of Mineral Waters Found in Hatay Ophiolites and Their Relationships with Fault Characteristics / Hatay’da Ofiyolitler İçerisinden Çıkan Mineralli Suların Fiziko-Kimyasal Özellikleri ve Fay Karakteristikleri İle İlişkileri”. TURKISH STUDIES -International Periodical for the Languages, Literature and History of Turkish or Turkic-, ISSN: 1308-2140, (Prof. Dr. Hayati Akyol Armağanı), Volume 11/2 Winter 2016, ANKARA/TURKEY, www.turkishstudies.net, DOI Number: http://dx.doi.org/10.7827/TurkishStudies.9052, p. 665–684.

Korkmaz, H., Geçen, R. & Kuşçu, V. (2016). “Asi Deltası Kıyı Kullanımı ve Kıyı Kenar Çizgisi Uygulama Problemleri / Problems about Utilization of Coast and Application of Coastal Edge Line on Orontes Delta (Samandağ)”. TURKISH STUDIES -International Periodical for the Languages, Literature and History of Turkish or Turkic-, ISSN: 1308-2140, (Prof. Dr. Hayati Akyol Armağanı), Volume 11/2 Winter 2016, ANKARA/TURKEY, www.turkishstudies.net, DOI Number: http://dx.doi.org/10.7827/TurkishStudies.9216, p. 779–808.

Lague, D., Hovius, N. & Davy, P. (2005). Discharge, discharge variability, and the bedrock channel profile, J. Geophys. Res.: 110, F04006.

Lamb, M. P., Dietrich, W. E. & Sklar, L. S. (2008). A model for fluvial bedrock incision by impacting suspended and bed load sediment, J. Geophys. Res.: 113, F03025.

Langbein, W. B. (1964). Profiles of rivers of uniform discharge. United States Geological Survey Professional Paper 501B, 119–122.

Leopold, L. B. & Miller, J. P. (1956). Ephemeral Streams: Hydraulic Factors and their Relation to the Drainage Network. U.S. Geological Survey, Geological Survey Professional Paper 282 A, Washington, D.C., 1–37.

Leopold, L. B., Wolman, M. G. & Miller, J. P. (1964). Fluvial Processes in Geomorphology, San Francisco, W.H. Freeman and Co., 522p.

McCabe, C. (2016). Using Terrestrial LiDAR to Monitor Erosion within the Gold Basin Landslide Complex, Verlot, WA. Master of Science, Earth and Space Sciences: Applied Geosciences University of Washington, MESSAGe Technical Report Number: 028.

McNelis, J. J. (2016). Quantifying Gully Erosion in West Tennessee Using High Resolution LIDAR Data. Master's Thesis, University of Tennessee.

Melton, M. A. (1957). An Analysis of the Relations Among Elements of Climate, Surface Properties and Geomorphology. Proj. NR 389-042, Tech. Rep 11, Columbia University, Department of Geology, ONR, New York.

Moretto, J., Delai, F., Rigon, E., Picco, L., Mao, L. & Lenzi, M. A. (2012). Assessing short term erosiondeposition processes of the Brenta River using LiDAR surveys. WIT Transactions on Engineering Sciences: 73, 149–160.

Morisawa, M. E. (1959). Relation of Morphometric Properties to Runoff in the Little Mill Creek, Ohio, Drainage Basin. Tech. Rep., 17. Department of Geology, ONR, Colombia University, New York.

Mueller, J. (1968). An Introduction to the Hydraulic and Topographic Sinuosity Indexes1. Annals of the Association of American Geographers 58 (2): 371.

Nadal-Romero, E., Revuelto, J., Errea, P. & López-Moreno, J. I. (2015). The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees). Soil: 1, 561–573.

Oskin, M. E., Burbank, D.W., Phillips, F. M., Marrero, S. M., Bookhagen, B. & Selander J. A. (2014). Relationship of channel steepness to channel incision rate from a tilted and progressively exposed unconformity surface, J. Geophys. Res. Earth Surface: 119, 366–384.

Perroy, R., Bookhagen, B., Asner, G. & Chadwick, O. (2010). Comparison of gully erosion estimates using airborne and ground-based LIDAR. Geomorphology 118: 288–300.

Preti, F., Tarolli, P., Dani, A., Calligaro, S. & Prosdocimi, M. (2013). LiDAR derived high resolution topography: the next challenge for the analysis of terraces stability and vineyard soil erosion. Journal of Agricultural Engineering: XLIV(s2):e16, 85–89.

Raouf, A., Peng, Y. & Shah, T. I. (2017). Integrated Use of Aerial Photographs and LiDAR Images for Landslide and Soil Erosion Analysis: A Case Study ofWakamow Valley, Moose Jaw, Canada. Urban Science: 1, 20.

Ries, J. B. (1998). Modes and rates of fluvial bedrock incision in the Valley and Ridge Province, Southwestern Virginia. Keck Research Symposium in Geology 11: 254–257.

Rixhon, G., Braucher, R., Bourlès, D., Siame, L., Bovy, B. & Demoulin, A. (2011). Quaternary river incision in NE Ardennes (Belgium)eInsights from 10Be/26Al dating of river terraces. Quaternary Geochronology: 6, 273–284.

Schumm, S. A. (1956). The Evolution of Drainage Systems and Slopes in Bad Lands at Perth, Amboi, New Jersey. Geol. Soc. Ame. Bull. 67 (5), pp. 597–646.

Shruthi, R. B. V., Kerle, N., Jetten, V., Abdellah, L. & Machmach, I. (2015). Quantifying temporal changes in gully erosion areas with object oriented analysis. Catena 128: 262–277.

Sklar, L. & Dietrich, W. E. (2004). A mechanistic model for river incision into bedrock by saltating bed load, Water Resour. Res.: 40, W06301.

Strahler, A. N. (1952). Hypsometric (Area-Altitude) Analysis of Erosional Topology. Geological Society of America Bulletin 63 (11): 1117–1142.

Strahler, A. N. (1957). Quantitative Analysis of Watershed Geomorphology. Transactions of the American Geophysical Union 8 (6): 913–920.

Strahler, A. N. (1964). Quantitative Geomorphology of Drainage Basin and Channel Networks. In : Handbook of Applied Hydrology (edited by V.T.Chow), pp. 4.39–4.76.

Stumpf, A., Malet, P., Kerle, N., Niethammer, U. & Rothmund, S. (2013). Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology: 186, 12–27.

Telbisz, T. & Keszler, O. (2018). DEM-based morphometry of large-scale sand dune patterns in the Grand Erg Oriental (Northern Sahara Desert, Africa). Arabian Journal of Geosciences, 11:382.

Tomkin, J. H., Brandon, M. T., Pazzaglia, F. J., Barbour. J. R. & Willett, S. D. (2003). Quantitative testing of bedrock incision models for the Clearwater River, NW Washington State. Journal of Geophysical Research: 108, B6, 2308.

Topuz, M. & Karabulut, M. (2016). “Limonlu ve Alata Havzalarının (Mersin-Erdemli) Jeomorfometrik Analizi / Geomorphometric Analysis of Limonlu and Alata Watersheds (Erdemli, Mersin, Turkey)”. TURKISH STUDIES -International Periodical for the Languages, Literature and History of Turkish or Turkic-, ISSN: 1308-2140, (Prof. Dr. Hayati Akyol Armağanı), Volume 11/2 Winter 2016, ANKARA/TURKEY, www.turkishstudies.net, DOI Number: http://dx.doi.org/10.7827/TurkishStudies.9165, p. 1231–1250.

United Nations. (2016). The World’s in Cities 2016 Data Booklet. United Nation Economic & Social Affairs.

Whipple, K. & Tucker, G. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res.: 104, 17,661–17,674.

Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E. & Roberts, G. P. (2007). Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates. Geology: 35 (2), 103–106.

Young, A.P., Olsen, M. J., Driscoll, N., Flick, R.E., Gutierrez, R., Guza, R. T., Johnstone, E. & Kuester, F. (2010). Comparison of Airborne and Terrestrial LIDAR Estimates of Seacliff Erosion in Southern California, Photogrammetric Engineering and Remote Sensing 76: 421–427.