The apoptotic and proliferative effects of tulathromycin and gamithromycin on bovine tracheal epithelial cell culture

The apoptotic and proliferative effects of tulathromycin and gamithromycin on bovine tracheal epithelial cell culture

Gamithromycin and tulathromycin are commonly used in the treatment of bovine respiratory bacterial diseases. The current work was undertaken to establish the apoptotic, necrotic, and cytotoxic effects of these antibiotics in the target animal. Cells with apoptosis and necrosis were determined by dual staining method, cytotoxic effects were determined by MTT assay, cell proliferative effects were examined by XCelligence real-time cell analysis system (RTCA-SP). The comparison between gamithromycin and tulathromycin concentrations on tracheal cells in terms of % cell viability was found to be significantly different. While the cell viability percentage of gamithromycin was higher at 150 µg/mL, 180 µg/mL, and 240 µg/mL than tulathromycin, and at 2 µg/mL, 4 µg/mL, 10 µg/mL, 20 µg/mL, and 50 µg/mL concentrations tulathromycin cell viability was higher than gamithromycin (p < 0.05). When the staining method data were evaluated, the difference between the results of % apoptotic index at 20 µg/mL concentration was significant and it was found that gamithromycin had more apoptotic effect than tulathromycin (p < 0.05). It was seen that tulathromycin and gamithromycin applied on tracheal epithelial cells at concentrations of 2 and 10 µg/mL increased the viability depending on time. The increase in epithelial cell proliferation of gamithromycin and tulathromycin due to time shows that these antibiotics can maintain longterm prophylactic treatment against diseases.

___

  • 1. Jelić D, Antolović R. From erythromycin to azithromycin and new potential ribosome-binding antimicrobials. Antibiotics (Basel) 2016; 5(3): 29. doi:10.3390/antibiotics5030029
  • 2. Pyörälä S, Baptiste KE, Catry B, Van Duijkeren E, Greko C et al. Macrolides and lincosamides in cattle and pigs: use and development of antimicrobial resistance. The Veterinary Journal 2014; 200(29): 230-239. doi: 10.1016/j.tvjl.2014.02.028
  • 3. Papich MG, Riviere JE. Chloramphenicol and derivatives, macrolides, lincosamides and miscellaneous antimicrobials. In: Adams HR (editor). Veterinary Pharmacology and Therapeutics, 8th ed. Lowa, USA: Blackwell Publishing; 2001. pp. 876-882.
  • 4. Anadón A, Reeve-Johnson L. Macrolide antibiotics, drug interactions and microsomal enzymes: implications for veterinary medicine. Research in Veterinary Science 1999; 66(3): 197-203. doi: 10.1053/rvsc.1998.0244
  • 5. Benchaoui HA, Nowakowski M, Sherington J, Rowan TG, Sunderland SJ. Pharmacokinetics and lung tissue concentrations of tulathromycin in swine. Journal of Veterinary Pharmacology and Therapeutics 2004; 27(4): 203-210. doi: 10.1111/j.1365-2885.2004.00586.x
  • 6. Nowakowski MA, Inskeep PB, Risk JE, Skogerbo TL, Benchaoui HA et al. Pharmacokinetics and lung tissue concentrations of tulathromycin, a new triamilide antibiotic, in cattle. Veterinary Therapeutics: Research in Applied Veterinary Medicine 2004; 5(1): 60-74.
  • 7. Papich MG. Chloramphenicol and derivatives, macrolides, lincosamides, and miscellaneous antimicrobials. In: Riviere JE, Papich MG (editors). Veterinary Pharmacology and Therapeutics. 10th ed. Hoboken, USA: John Wiley and Sons; 2018. pp. 912-925.
  • 8. Dedonder KD, Apley MD, Li M, Gehring R, Harhay DM et al. Pharmacokinetics and pharmacodynamics of gamithromycin in pulmonary epithelial lining fluid in naturally occurring bovine respiratory disease in multi source commingled feedlot cattle. Journal of Veterinary Pharmacology and Therapeutics 2015; 39(2): 157-166. doi: 10.1111/jvp.12267
  • 9. Hildebrand F, Venner M, Giguére S. Efficacy of gamithromycin for the treatment of foals with mild to moderate bronchopneumonia. Journal of Veterinary Internal Medicine 2015; 29(1): 333-338. doi: 10.1111/jvim.12504
  • 10. Villarino N, Brown SA, Martín-Jiménez T. The role of the macrolide tulathromycin in veterinary medicine. The Veterinary Journal 2013; 198(2):352-357. doi: 10.1016/j. tvjl.2013.07.032
  • 11. Wyns H, Meyer E, Plessers E, Watteyn A, De Baere S et al. Pharmacokinetics of gamithromycin after intravenous and subcutaneous administration in pigs. Research in Veterinary Science 2014; 96(1): 160-163. doi: 10.1016/j.rvsc.2013.11.012
  • 12. Čulić O, Eraković V, Parnham MJ. Anti-inflammatory effects of macrolide antibiotics. European Journal of Pharmacology 2001; 429(1-3): 209-229. doi: 10.1016/s0014-2999(01)01321-8
  • 13. Mills PR, Davies RJ, Devalia JD. Airway epithelial cells, cytokines, and pollutants. American Journal of Respiratory and Critical Care Medicine 1999; 160: 38-43. doi: 10.1164/ ajrccm.160.supplement_1.11
  • 14. Tam A, Wadswort S, Dorscheid D, Man SFP, Sin DD. The airway epithelium: more than just a structural barrier. Therapeutic Advances in Respiratory Disease 2011; 5(4): 255-273. doi: 10.1177/1753465810396539
  • 15. Altenburg J, De Graaff CS, Van Der Werf TS, Boersma WG. Immunomodulatory effects of macrolide antibiotics- part1: biological mechanisms. Respiration 2011; 81(1): 67-74. doi: 10.1159/000320319
  • 16. Fischer CD, Beatty JK, Zvaigzne CG, Morck DW, Lucas MJ et al. Anti-inflammatory benefits of antibiotic-induced neutrophil apoptosis: tulathromycin induces caspase-3-dependent neutrophil programmed cell death and inhibits NF-kappaB signaling and CXCL8 transcription. Antimicrobial Agents and Chemotherapy 2011; 55(1): 338-348. doi: 10.1128/AAC.01052- 10
  • 17. Kwiatkowska B, Maślińska M. Macrolide therapy in chronic inflammatory diseases. Mediators of Inflammation, 2012; 636157. doi: 10.1155/2012/636157.
  • 18. Beckmann JD, Takizawa H, Romberger D, Illig M, Claassen L, et al. Serum-free culture of fractionated bovine bronchial epithelial cells. In Vitro Cellular & Developmental BiologyAnima 1992; 28A(1): 39-46. doi: 10.1007/BF02631078
  • 19. Kürüm A, Karahan S, Kocamış H, Çınar M, Ergün E. Determination of antioxidant in bovine oviduct epithelial cell culture isolated at different periods of the estrous cycle. Turkish Journal of Veterinary and Animal Sciences 2019; 43: 448-455
  • 20. CEN-European Committee for Standardization. Biological evaluation of medical devices - Part 5: Tests for Cytotoxicity: In Vitro Methods. 2009c: Standart No. EN ISO 10993-5
  • 21. Çiftçi H, Türk M, Tamer U, Karahan S, Menemen Y. Silver nanoparticles: cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turkish Journal of Biology 2013; 37(5): 573-581. doi: 10.3906/biy-1302-21
  • 22. Aslantürk ÖS. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. In: Larramendy ML, Soloneski S (editors). Genotoxicity- A Predictable Risk to Our Actual World. Intech Open; 2018. pp. 1-17. doi: 10.5772/ intechopen.71923
  • 23. Duewelhenke N, Krut O, Eysel P. Influence on mitochondria cytotoxicity of different antibiotics administered in high concentrations on primary human osteoblasts and cell lines. Antimicrobial Agents and Chemotherapy 2007; 51(1): 54-63. doi: 10.1128/AAC.00729-05
  • 24. Viluksela M, Vainio PJ, Tuominen RK. Cytotoxicity of macrolide antibiotics in a cultured human liver cell line. Journal of Antimicrobial Chemotherapy 1996; 38(3): 465-473. doi: 10.1093/jac/38.3.465
  • 25. Will Y, Shields JE, Wallace KB. Drug-induced mitochondrial toxicity in the geriatric population: challenges and future directions. Biology (Basel) 2019; 8(2): 32. doi: 10.3390/ biology8020032.
  • 26. Jiang X, Baucom C, Elliott RL. Mitochondrial toxicity of azithromycin results in aerobic glycolysis and DNA damage of human mammary epithelia and fibroblasts. Antibiotics (Basel) 2019; 8(3): 110. doi: 10.3390/antibiotics8030110
  • 27. Elliott MR, Ravichandran KS. Clearance of apoptotic cells: implications in health and disease, Journal of Cell Biology 2010; 189(7): 1059-1070. doi: 10.1083/jcb.201004096
  • 28. Pierce JD, Pierce J, Stremming S, Fakhari M, Clancy RL. The role of apoptosis of respiratory diseases. Clinical Nurse Specialist 2007; 21(1): 22-28. doi: 10.1097/00002800-200701000-00006
  • 29. Duquette SC, Fischer CD, Williams AC, Sajedy S, Feener TD et al. Immunomodulatory effects of tulathromycin on apoptosis, efferocytosis, and proinflammatory leukotriene B4 production in leukocytes from Actinobacillus pleuropneumoniae-or zymosan-challenged pigs. American Journal of Veterinary Research 2015; 76(6): 507-519. doi: 10.2460/ajvr.76.6.507
  • 30. Moges R, De Lamache DD, Sajedy S, Renaux BS, Hollenberg MD et al. Anti-inflammatory benefits of antibiotics: Tvlvalosin induces apoptosis of porcine neutrophils and macrophages, promotes efferocytosis, and inhibits pro-inflamatory CXCL-8, lL1 α, and LTB4 production, while inducing the release of proresolving lipoxin A4 and resolvin D1 . Frontiers in Veterinary Science, 2018; 5: 57. doi: 10.3389/fvets.2018.00057.
  • 31. Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 2011; 147(2): 742-758. doi: 10.1016/j.cell.2011.10.033
  • 32. Yan G, Du Q, Wei X, Miozzi J, Kang C et al. Application of realtime cell electronic analysis system in modern pharmaceutical evaluation and analysis. Molecules 2018; 23(12): 3280. doi: 10.3390/molecules23123280.
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Estimation of the factors affecting lactation milk yield of Holstein cattle by the adaptive neuro-fuzzy inference system

Aycan Mutlu YAĞANOĞLU

Effects of centrifugation and washing of freeze-thawed blood on isolated DNA characteristics

Mevlüt ARSLAN

Effects of vitamin D administration at the beginning of lactation in dairy cows on inflammatory response and liver metabolism

Hasan BATMAZ, Feyyaz KAYA

Epidemiological investigation of bovine tuberculosis infection dynamics in Turkey

Şahin ÇAKIR, Burak DEVECİ, Murat YILDIRIM, Kadir Serdar DİKER, Selcen YÜKSEL, Erhan AKÇAY, Fevziye İpek KESKİN

The effects of polymorphisms in the CX3CR1 gene on the development of canine hip dysplasia

Sertaç ATALAY, Süleyman KÖK

Interaction effects of age and body weight losses during moulting on the performance of commercial laying hens

Mian Mubashar SALEEM, Ehsaan Ullah KHAN, Usman ELAHI, Jibran HUSSAIN, Sohail AHMAD, Muhammad USMAN, Syed Ghulam Mohayud Din HASHMI

Effect of age, stocking density, genotype, and cage tier on feather score of layer pure lines

Mustafa DUMAN, Selami TOK, Brian TAINIKA, Ahmet ŞEKEROĞLU

The apoptotic and proliferative effects of tulathromycin and gamithromycin on bovine tracheal epithelial cell culture

Yaşar ŞAHİN, Ebru YILDIRIM, Mustafa TÜRK, Begüm YURDAKÖK DİKMEN

Nutritional values and in vitro fermentation parameters of some fodder species found in two rangeland areas in the Republic of Benin

Nuh OCAK, Adem KAMALAK, Euloge OGOUKAYODE AKAMBİ OLOMONCHİ, Ali Vaiz GARİPOĞLU

Effects of probiotic supplementation for piglets in a nursery: a meta-analysis of controlled randomized studies

Fabiana Ribeiro CALDARA, Isabella Cristina de Castro LIPPI, Larissa Braganholo VARGAS, Henrique Biasotto MORAIS, Jean Kaique VALENTIM, Janaína Palermo MENDES