The effects of polymorphisms in the CX3CR1 gene on the development of canine hip dysplasia

The effects of polymorphisms in the CX3CR1 gene on the development of canine hip dysplasia

Hip dysplasia, caused by both environmental and genetic components, is a common disorder characterized by hip instability in humans and dogs. Unfortunately, the genetic mechanisms that cause the disease in both have not been fully determined. The aim of this study was polymorphisms in the exon 2 and 3ʹ UTR regions of the CX3CR1 gene were determined and their effects on the development of Canine Hip Dysplasia (CHD) in three dog breeds (German Shepherd, Belgian Malinois, Labrador Retriever). For this purpose, a case -control study was designed with 172 dogs in Dog Breeding and Training Center (DBTC) in Turkey. Each dog was evaluated according to the Norberg angle by the DBTC veterinarians. One hundred and seventeen dogs (32 German Shepherds, 49 Belgian Malinois, 36 Labrador Retrievers) classified as normal were included in the control group, and fifty - five dogs (24 German Shepherds, 14 Belgian Malinois, 17 Labrador Retrievers) diagnosed with CHD were included in the case group. Molecular genetic analyzes were performed with blood samples taken from each dog. Seven previously identified SNPs (g.8938599_8938600insCC, g.8937121G>A, g.8937137A>G, g.8937319T>G, g.8937441T>C, g.8937450A>G, g.8937590C>T) and a rare novel deletion (g. 8937205_ 8937206del) were identified in the 3ʹ UTR regions of the CX3CR1 gene. The distribution of SNPs alleles in the case and control was compared by means of statistical analysis at allelic, genotypic, haplotypic, and SNP - SNP interaction levels. Single SNP analysis revealed that g.8937121G>A was significantly associated with susceptibility to CHD in Belgian Malinois (p = 0.00049) in the codominant model. Five SNP - SNP interactions were identified to be associated with CHD in Labrador Retrievers and the most suggestive of these was between g.8938599_8938600insCC and g.8937450A>G (p = 0.0004). We found that one haplotype block, consisting of two SNPs (g.8937137A>G and g.8937319T>G) was associated with susceptibility to CHD in Belgian Malinois (p = 0.022). None of the detected polymorphisms was statistically significantly associated with CHD in German Shepherds.

___

  • 1. Bartolomé N, Segarra S, Artieda M, Francino O, Sánchez E et al. A genetic predictive model for canine hip dysplasia: integration of Genome Wide Association Study (GWAS) and candidate gene approaches. Plos One 2015; 10 (4): e0122558. doi: 10.1371/journal.pone.0122558
  • 2. Pascual‐Garrido C, Guilak F, Rai M.F, Harris MD, Lopez MJ et al. Canine Hip Dysplasia: A Natural Animal Model for Human Developmental Dysplasia of the Hip. Journal of Orthopaedic Research 2017; 36 (7): 1807-1817. doi: 10.1002/jor.23828
  • 3. Janutta V, Hamann H, Distl O. Genetic and phenotypic trends in canine hip dysplasia in the German population of German shepherd dogs. Berliner und Munchener Tierarztliche Wochenschrift 2007; 121 (3-4): 102-109.
  • 4. Lewis TW, Blott SC, Woolliams JA. Genetic evaluation of hip score in UK Labrador Retrievers. Plos One 2010; 5 (10): e12797.
  • 5. Mikkola L, Holopainen S, Pessa-Morikawa T, Lappalainen AK, Hytönen MK et al. Genetic dissection of canine hip dysplasia phenotypes and osteoarthritis reveals three novel loci. BMC Genomics 2019; 20 (1): 1027.
  • 6. Sánchez-Molano E, Woolliams JA, Pong-Wong R, Clements DN, Blott SC et al. Quantitative trait loci mapping for canine hip dysplasia and its related traits in UK Labrador Retrievers. BMC Genomics 2014; 15 (1): 833.
  • 7. Fels L, Marschall Y, Philipp U, Distl O. Multiple loci associated with canine hip dysplasia (CHD) in German shepherd dogs. Mammalian Genome 2014; 25 (5-6): 262-269.
  • 8. Worth AJ, Cave NJ. A veterinary perspective on preventing injuries and other problems that shorten the life of working dogs. Revue Scientifique Et Technique-Office International Des Epizooties 2018; 37 (1): 161-169. doi: 10.20506/rst.37.1.2749
  • 9. Jones OY, Raschke SU, Riches PE. Inertial properties of the German Shepherd Dog. Plos One 2018; 13 (10): e0206037. doi: 10.1371/journal.pone.0206037
  • 10. Leighton EA, Holle D, Biery DN, Gregor TP, McDonald-Lynch MB et al. Genetic improvement of hip - extended scores in 3 breeds of guide dogs using estimated breeding values: Notable progress but more improvement is needed. Plos One 2019; 14 (2): e0212544.
  • 11. Vince KJ. Canine hip dysplasia: surgical treatment for the military working dog. Army Medical Department Journal 2007; 44-50.
  • 12. Sánchez-Molano E, Pong-Wong R, Clements DN, Blott SC, Wiener P et al. Genomic prediction of traits related to canine hip dysplasia. Frontiers in Genetics 2015; 6: 97. doi: 10.3389/ fgene.2015.00097
  • 13. Manz E, Tellhelm B, Krawczak M. Prospective evaluation of a patented DNA test for canine hip dysplasia (CHD). Plos One 2017; 12 (8): e0182093. doi: 10.1371/journal.pone.0182093
  • 14. Meeson RL, Todhunter RJ, Blunn G, Nuki G, Pitsillides AA. Spontaneous dog osteoarthritis - a One Medicine vision. Nature Reviews Rheumatology 2019; 15 (5): 273-287.
  • 15. Todhunter RJ, Garrison SJ, Jordan J, Hunter L, Castelhano MG et al. Gene expression in hip soft tissues in incipient canine hip dysplasia and osteoarthritis. Journal of Orthopaedic Research® 2019; 37 (2): 313-324
  • 16. Distl O, Marschall Y, Stock KF. Analysis for the genetic disposition for hip dysplasia in Canidae. European Patent Office Bulletin. 2013; 672.
  • 17. Fels L, Distl O. Identification and validation of quantitative trait loci (QTL) for canine hip dysplasia (CHD) in German shepherd dogs. Plos One 2014; 9 (5): e96618.
  • 18. Huang M, Hayward JJ, Corey E, Garrison SJ, Wagner GR et al. A novel iterative mixed model to remap three complex orthopedic traits in dogs. Plos One 2017; 12 (6): e0176932. doi: 10.1371/journal.pone.0176932
  • 19. Lavrijsen IC, Leegwater PA, Martin AJ, Harris SJ, Tryfonidou MA et al. Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers. Plos One 2014; 9 (1): e87735.
  • 20. Zhou Z, Sheng X, Zhang Z, Zhao K, Zhu L et al. Differential genetic regulation of canine hip dysplasia and osteoarthritis. Plos One 2010; 5 (10): e13219. doi: 10.1371/journal. pone.0013219
  • 21. Mikkola LI, Holopainen S, Lappalainen AK, Pessa-Morikawa T, Augustine TJ et al. Novel protective and risk loci in hip dysplasia in German Shepherds. Plos Genetics 2019; 15 (7): e1008197.
  • 22. Martin AJ. Genetic test. Google Patents 2016
  • 23. Martinez A, Simon L, Tejedor D, Artieda M, Bartolome N et al. Markers for joint displasia, osteoarthritis and conditions secondary thereto. Google Patents 2013
  • 24. Kenanidis E, Gkekas NK, Karasmani A, Anagnostis P, Christofilopoulos P et al. Genetic Predisposition to Developmental Dysplasia of the Hip. The Journal of Arthroplasty 2020; 35 (1): 291-300. e1. doi: 10.1016/j. arth.2019.08.031
  • 25. Feldman GJ, Parvizi J, Sawan H, Erickson JA, Peters CL. Linkage mapping and whole exome sequencing identify a shared variant in CX3CR1 in a large multi-generation family. The Journal of Arthroplasty 2014; 29 (9): 238-241. doi: 10.1016/j.arth.2014.05.014
  • 26. Li L, Wang X, Zhao Q, Wang E, Wang L et al. CX3CR1 polymorphisms associated with an increased risk of developmental dysplasia of the hip in human. Journal of Orthopaedic Research 2017; 35 (2): 377-380. doi: 10.1002/ jor.23294
  • 27. Basit S, Alharby E, Albalawi AM, Khoshhal KI. Whole genome SNP genotyping in a family segregating developmental dysplasia of the hip detected runs of homozygosity on chromosomes 15q13. 3 and 19p13. 2. Congenital Anomalies 2018; 58 (2) 56-61. doi: 10.1111/cga.12235
  • 28. Wojdasiewicz P, Poniatowski ŁA, Kotela A, Deszczyński J, Kotela I et al. The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: occurrence and potential role in osteoarthritis. Archivum Immunologiae et Therapiae Experimentalis 2014; 62 (5): 395-403. doi: 10.1007/s00005-014-0275-0
  • 29. Hall T, Biosciences I, Carlsbad C. BioEdit: an important software for molecular biology. Gerf Bull Bioscience 2011; 2 (1): p. 60-61.
  • 30. Graffelman J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. Journal of Statistical Software, 2015; 64 (3): 1-23.
  • 31. R Development Core Team, R: A language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing 2010
  • 32. González JR, Armengol L, Solé X, Guinó, E, Mercader JM et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics 2007; 23 (5): 654-655.
  • 33. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2004; 21 (2): 263-265. doi: 10.1093/bioinformatics/bth457
  • 34. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J et al. The structure of haplotype blocks in the human genome. Science 2002; 296 (5576): 2225-2229. doi: 10.1126/science.1069424
  • 35. Schnell G. Some new disease in dogs. American Kennel Gaz 1935; 52: p. 25-26.
  • 36. Pfahler S. Distl O. Identification of quantitative trait loci (QTL) for canine hip dysplasia and canine elbow dysplasia in Bernese mountain dogs. Plos One 2012; 7 (11): e49782. doi: 10.1371/ journal.pone.0049782
  • 37. Hayward JJ, Castelhano MG, Oliveira KC, Corey E., Balkman C et al. Complex disease and phenotype mapping in the domestic dog. Nature Communications 2016; 7: 10460. doi: 10.1038/ncomms10460
  • 38. Kang JM, Seo D, Lee SH, Lee DH, Kim YK et al. Genome-wide association study to identify canine hip dysplasia loci in dogs. Journal of Animal Science and Technology 2020; 62 (3): 306.
  • 39. Choi BH, Kwon S, Yoo JG, Lee SH. Genome-wide Association Study using the Canine SNP20 Beadchip for Canine Hip Dysplasia in Labrador Retriever. Journal of Animal Breeding and Genomics 2019; 3 (1): 7-15.
  • 40. Feldman GJ, Parvizi J, Levenstien M, Scott K, Erickson JA et al. Developmental dysplasia of the hip: linkage mapping and whole exome sequencing identify a shared variant in CX3CR1 in all affected members of a large multigeneration family. Journal of Bone and Mineral Research 2013; 28 (12): 2540- 2549.
  • 41. Wojdasiewicz P, Turczyn P, Dobies-Krzesniak B, Frasunska J, Tarnacka B. Role of CX3CL1/CX3CR1 Signaling Axis Activity in Osteoporosis. Mediators of Inflammation 2019; 7570452. doi: 10.1155/2019/7570452
  • 42. Dai Y, Liu S, Xie X, Ding M, Zhou Q et al. MicroRNA-31 promotes chondrocyte proliferation by targeting C-X-C motif chemokine ligand 12. Molecular Medicine Reports 2019; 19 (3): 2231-2237.
  • 43. Zhao X, Wang T, Cai B, Wang X, Feng W et al. MicroRNA-495 enhances chondrocyte apoptosis, senescence and promotes the progression of osteoarthritis by targeting AKT1. American Journal of Translational Research 2019; 11 (4): 2232.
  • 44. Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocytespecific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Molecular and Cellular Biology 2011; 31 (14): 3019-3028.
  • 45. Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proceedings of the National Academy of Sciences 2008; 105 (6): 1949-1954.
  • 46. Zhao X, Xu D, Li Y, Zhang J, Liu T et al. MicroRNAs regulate bone metabolism. Journal of Bone and Mineral Metabolism 2014; 32 (3): 221-231.
  • 47. Cheng B, Jia Y, Wen Y, Hou W, Xu K et al. Integrative Analysis of MicroRNA and mRNA Sequencing Data Identifies Novel Candidate Genes and Pathways for Developmental Dysplasia of Hip. Cartilage 2021; p. 1947603521990859. doi: 10.1177/1947603521990859
  • 48. Ding R, Liu X, Zhang J, Yuan J, Zheng S et al. Downregulation of miR-1-3p expression inhibits the hypertrophy and mineralization of chondrocytes in DDH. Journal of Orthopaedic Surgery and Research 2021; 16:512: 1-10. doi: 10.1186/s13018-021-02666-1
  • 49. Gu H, Wu L, Chen H, Huang Z, Xu J et al. Identification of differentially expressed microRNAs in the bone marrow of osteoporosis patients. American Journal of Ttranslational Research 2019; 11 (5): 2940.
  • 50. Song J, Kim D, Lee CH, Lee MS, Chun CH et al. MicroRNA-488 regulates zinc transporter SLC39A8/ZIP8 during pathogenesis of osteoarthritis. Journal of Biomedical Science 2013; 20 (1): 1-6.
  • 51. Li Y, Li S, Luo Y, Liu Y, Yu N. LncRNA PVT1 regulates chondrocyte apoptosis in osteoarthritis by acting as a sponge for miR-488-3p. DNA and Cell Biology 2017; 36 (7): p. 571- 580.
  • 52. Wang F, Hu X, Cao C, Zhao Y, He, S. MiR-488 promotes fracture healing by targeting DKK1. European Review for Medical and Pharmacological Sciences 2018; 22 (24): p. 8965- 8972.
  • 53. Bruno AE, Li L, Kalabus JL, Pan Y, Yu A et al. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3’UTRs of human genes. BMC Genomics 2012; 13 (1): 44.
  • 54. Li P, Guo M, Wang C, Li X, Zou Q. An overview of SNP interactions in genome-wide association studies. Briefings in Functional Genomics 2014; 14 (2): 143-155. doi: 10.1093/bfgp/ elu036
  • 55. Gerke J, Lorenz K, Cohen B. Genetic interactions between transcription factors cause natural variation in yeast. Science 2009; 323 (5913): p. 498-501.
  • 56. Yang CH, Lin YD, Chuang LY, Chen JB, Chang HW. Joint analysis of SNP–SNP-environment interactions for chronic dialysis by an improved branch and bound algorithm. Journal of Computational Biology 2017; 24 (12): 1212-1225.
  • 57. Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. Wiley Interdisciplinary Reviews: RNA 2018; 9 (4): e1474.
Turkish Journal of Veterinary and Animal Sciences-Cover
  • ISSN: 1300-0128
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The effects of κ-casein, β-lactoglobulin, prolactin and DGAT1 polymorphisms on milk yields in Turkish Holstein cows

Murat Soner BALCIOĞLU, Emine ŞAHİN SEMERCİ

Effects of vitamin D administration at the beginning of lactation in dairy cows on inflammatory response and liver metabolism

Hasan BATMAZ, Feyyaz KAYA

Effects of probiotic supplementation for piglets in a nursery: a meta-analysis of controlled randomized studies

Fabiana Ribeiro CALDARA, Isabella Cristina de Castro LIPPI, Larissa Braganholo VARGAS, Henrique Biasotto MORAIS, Jean Kaique VALENTIM, Janaína Palermo MENDES

Determination of plant-specific retrotransposons in chicken

Sevgi MARAKLI, Cihat Erdem BÜLBÜL, Fatih BİLGİ, Levent MERCAN

Estimation of the factors affecting lactation milk yield of Holstein cattle by the adaptive neuro-fuzzy inference system

Aycan Mutlu YAĞANOĞLU

Gene expression and Doppler flowmetry of the reproductive tract in Nelore (Bos indicus) cows synchronized with estradiol and equine chorionic gonadotrophin

Diego Luiz dos Santos RIBEIRO, Itamara Gomes de FRANÇA, Alcina Vieira de CARVALHO NETA, José Ribamar de Souza TORRES JÚNIOR, Nancyleni Pinto Chaves BEZERRA, Larissa Sarmento dos SANTOS

The apoptotic and proliferative effects of tulathromycin and gamithromycin on bovine tracheal epithelial cell culture

Yaşar ŞAHİN, Ebru YILDIRIM, Mustafa TÜRK, Begüm YURDAKÖK DİKMEN

Interaction effects of age and body weight losses during moulting on the performance of commercial laying hens

Mian Mubashar SALEEM, Ehsaan Ullah KHAN, Usman ELAHI, Jibran HUSSAIN, Sohail AHMAD, Muhammad USMAN, Syed Ghulam Mohayud Din HASHMI

Nutritional values and in vitro fermentation parameters of some fodder species found in two rangeland areas in the Republic of Benin

Nuh OCAK, Adem KAMALAK, Euloge OGOUKAYODE AKAMBİ OLOMONCHİ, Ali Vaiz GARİPOĞLU

Cryoprotective effect of vaccenic acid supplemented in bull semen extender

Pürhan Barbaros TUNCER, Deniz YENİ, Muhammed Enes İNANÇ, Umut TAŞDEMİR, Mehmet Fuat GÜLHAN, Şükrü GÜNGÖR, Ruhi TÜRKMEN, Fatih AVDATEK