Integrated environmental quality assessment of Kızılırmak River and its coastal environment

Kızılırmak, havzasındaki insan aktiviteleri nedeniyle yüksek miktarda besin elementleri, iz metaller ve diğer bileşiklerin yüklerini taşımaktadır. Bu araştırmanın ana amaçları; su deşarjları, besin elementleri ve iz metallerinin yersel ve mevsimsel değişimlerini değerlendirme; ayrıca verileri, su ve sediment kalite kriter değerleriyle karşılaştırma ve belli kalite indisleriyle örneğin su kalite indeksi (WQI), sediment kalite indeksi (SQI) ve trofik durum indeksi gibi, çevresel baskıları ve kirlilik yüklerinin kıyısal çevrede neden olduğu etkileri değerlendirmektir. Kızılırmak Nehrinin ana kolunda, Karadeniz’e deşarj ağzına yakın dokuz istasyondan numune alınmıştır. Arazi çalışmaları ve rutin laboratuar su analizleri 8 örnekleme noktasında mevsimsel olarak yürütülmüştür. Islak sediment numune analizlerinde, EC, pH, organik madde ve nem içeriği ölçülmüş ve 1,13-1,76 mS; 7,52-8,80; %1,41-4,60; %18,92-33,65 sıralamasında bulunmuştur. Diğer yandan, iz metal analizleri (Cd, Ni, ve Pb içeren) Atomik Absorpsiyon Spetroskopisi (AAS) cihazıyla hem su, hem de sediment örneklerine toplam sindirim metodu uygulanması sonrası ölçülmüştür. Gelişmekte olan ülkelerde Nehir kalitesi değerlendirmede, yüksek analitik ölçüm maliyeti, çalışmaların yürütülmesinde sınırlayıcı bir faktör olduğu için, bu çalışma da belli kalite indisleri kullanılmıştır. Her tip indis hesabı için, literatürden farklı yaklaşımları seçilmiş ve karşılaştırılmıştır. Hesaplanmış NSFWQI, WQIn, WQImin, değerleri, birbirleriyle uyumludur ve nehrin su kalitesinin orta seviyede olduğunu belirtmektedir. Kızılırmak üzerinde kurulu Derbent Barajı için iki farklı trofik durum indeks hesaplanması aynı sonuçları vermiştir. Bu durum, barajda ötrofik yapı olduğunu dolayısıyla algal yoğunluktaki artış ve alg patlaması olabileceğini belirtmektedir. Ayrıca, belli metal kalite indisleri hem su hem de sediman ölçümleri için hesaplandığında, nehrin orta kalitede, otomobil ekzosları ve kentsel akışlardan meydana gelebilen kurşun kirliliğine sahip olduğunu belirtmektedir.

Kızılırmak Nehri ve kıyısal çevresinin entegre çevresel kalite değerlendirilmesi

Kızılırmak River receives substantial loads of nutrients, trace metals and other compounds, resulting from anthropogenic activities within its catchment. The main aims of this research were to evaluate spatial and seasonal trends in water discharge, nutrients and trace metals and also to compare data with water and sediment quality criteria and with certain quality indices such as water quality index (WQI), sediment quality index (SQI) and trophic state index (TSI), identifying the environmental pressures and assessing the impact of the loads to the coastal environment. Nine stations were sampled within the main stream of Kızılırmak River near to the Black Sea. Field measurements and routine laboratory water analysis were carried on the eight sampling stations seasonally. Wet sediment sample analyses were also performed for EC, pH, organic matter and moisture content within the range of 1.13-1.76 mS; 7.52-8.80; 1.41-4.60%; 18.92-33.65%, respectively. However, trace metal analyses including Cd, Ni and Pb were done by Atomic Absorption Spectroscopy (AAS) both on water and sediment samples with the total digestion methods. Since the analytical cost involved could be a limiting factor for river quality assessments in developing countries, certain quality indices were used in this study. For each type of indices calculations, different approaches from the literature were selected and compared. Calculated NSFWQI, WQInew and WQI min. values are in good agreement and the water quality of the river is considered at medium level. For the Derbent Dam of Kızılırmak River, two different trophic level index calculations have also the same results indicating eutrophic conditions where algal growth and blooms can occur. However, certain metal quality indices both for water and sediment measurements indicate that the river has medium quality of lead pollution which may be caused by automobile exhausts and urban storm run-off.

___

  • APHA, AWWA, WPCF. 1995. Standard Methods for the Examination of Water and Wastewater, 18 th Ed., Washington, USA.
  • Bellos, D. and Sawidis, T. 2005. Chemical pollution monitoring of the River Pinios (Thessalia–Greece), Journal of Environmental Management, 76: 282-292.
  • Bordalo, A.A., Nilsumrachit, W. and Chalermuat, K. 2001. Water quality and uses of the Bangpakong River (Eastern Thailand), Water Research, 35: 3635-3642.
  • Caerio, S., Costa, M.H., Ramos, T.B., Fernandes, F., Silveira, N., Coimbra, A., Mederios, G. and Painho, M. 2005. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach, Ecological Indicators, 5: 155-169.
  • Carlson, R.E. 1977. A trophic state index for lakes, Limnol. Oceanogr., 22: 361-369.
  • Cheung, K.C., Poon, B.H.T., Lan, C.Y. and Wong, M.H. 2003. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China, Chemosphere, 52: 1431-1440.
  • DSI (General Directorate of State Hydraulic Works) 1986. Bafra Projesi Planlama Revizyon Raporu, DSI Bölge Müd., Samsun.
  • Golterman, H.L., Sly, P.G. and Thomas, R.L. 1983. Study on the relationship between water quality and sediment transport, UNESCO, Technical Papers in Hydrology France, 26 pp.
  • Karageorgis, A.P., Nikolaidis, N.P., Karamanos, H. and Skoulikidis, N. 2003. Water and sediment quality assessment of the Axios River and its coastal environment, Continental Shelf Research, 23: 1929- 944.
  • Lambou, V.W., Taylor, W.D., Hern, S.C. and Williams, L.R. 1983. Comparisons of Trophic State Measurements, Water Research, 17: 1619-1626.
  • Long, E.R. and MacDonald, D.D. 1998. Recommended uses of empirically derived sediment quality guidelines for marine and estuarine ecosystems, Human Ecol. Risk Assess., 4: 1019-1039.
  • Long, E.R., MacDonald, D.D., Severn, C.G. and Hong, C.B. 2000. Classifying probabilistic of acute toxicity in marine sediments with empirically derived sediment quality guidelines, Environ. Toxicol. Chem., 19: 2598-2616.
  • MacDonald, D.D., Carr, S., Clader, F.D., Long, E.D. and Ingersoll, L.G. 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters, Ecotoxicology, 5: 253-278.
  • Miller, W.W., Joung, H.M., Mahannah, C.N. and Garrett, J.R. 1986. Identification of water quality differences in Nevada through index application, J. Environ. Quality, 15: 265-272.
  • Miguel, E., Charlesworth, S., Ordonez, A. and Seijas, E. 2005. Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain), Science of the Total Environment, 340: 137-148.
  • Ott, W.R. 1978. Environmental Indices- Theory and Practice. Ann Arbor Science, Michigan, USA, 371 pp.OECD (Organization for Economic Co-Operation and Development), 1982. Eutrophication of Waters Monitoring, Assesment and Control, Paris.
  • Quilbe, R., Rousseau, A.N., Duchemin, M., Paulin, A., Gangbazo, G. and Villeneuve, J.P. 2006. Selecting a calculation method to estimate sediment and nutrient loads in streams: Application to the Beaurivage River (Quebec, Canada), Journal of Hydrology, 1-16.
  • Pesce, S.F. and Wunderlin, D.A. 2000. Use of Water quality indices to verify the impact of Cordoba City (Argentino) on Suquia River, Water Research, 34: 2915-2926.
  • Riba, I., DelValls, T.A., Forja, J.M. and Gomez-Parra, A. 2002. Evaluating the heavy Metal contamination in sediments from the Guadalquivir estuary after the Aznalcollar mining spill: a multivariate analysis approach, Environ. Monit. Assess., 77: 191-207.
  • Ruiz, F. 2001. Trace metals in estuarine sediments from the South–western Spanish Coast, Mar. Pollut. Bull., 42: 482-490.
  • Said, A., Stevens, D.K. and Sehlke, G. 2004. Environmental Assessment: An Innovative Index for evaluating water quality in streams, Environmental Management, 34: 406-414.
  • Tamasi, G. and Cini, R. 2004. Heavy metals in drinking waters from Mount Amiata. Possible risks from arsenic for public health in the province of Siena, Science of the Total Environment, 327: 41-51.
  • URL 1 2009. www.ebop.govt.nz/Water/Lakes/Trophic. Level.asp
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Greenhouse cultivation of Gracilaria verrucosa (Hudson) Papenfuss and determination of chemical composition

Şükran CİRİK, Zerrin ÇETİN, İlknur AK SİVRİKOZ, Semara CİRİK, Tolga GÖKSAN

Integrated environmental quality assessment of Kızılırmak River and its coastal environment

Gülfem BAKAN, Özkoç Hülya BÖKE, Sevtap TÜLEK, Hüseyin CÜCE

Redescription of Ephemeroporus barroisi (Richard, 1894) (Cladocera, Chydoridae) on the basis of Material from Mediterranean Anatolia (Turkey)

F. Banu YALIM, Battal ÇIPLAK

Economic analysis and sustainability of Turkish marine hatcheries

İlker Zeki KURTOĞLU, Haydar KÜÇÜK, Ali Alkan CANBAZ, Atilla ÖZDEMİR

Investigation of enteric bacteria of surface waters in the southwestern coast of Istanbul by means of GIS

Nüket SİVRİ, Dursun Zafer ŞİMŞEK

Cytogenetic analysis of Garra variabilis (Heckel, 1843) (Pisces, cyprinidae) from Savur stream (Mardin), Turkey

Arzu KARAHAN, Serap Ergene GÖZÜKARA

Fatty acid composition of selected Tissues of Unio elongatulus (Bourguignat, 1860) (Mollusca: bivalvia) collected from Tigris River, Turkey

İhsan EKİN, Mehmet BAŞHAN

The first record of Exopalaemon styliferus (H. Milne-Edwards, 1840) (Decapoda: Caridea: Palaemonidae) from Iran

Parviz ZARE, Ebrahim GHASEMİ, Elham SARFARAZ

The sensory quality of pearl mullet (chalcalburnus tarichi) fillets coated with different coating materials

Osman KILINÇÇEKER, Şükrü KURT

Karyotype analysis of the king nase fish, Chondrostoma regium (Heckel, 1843) (actinopterygii: cyprinidae) from Iran

Hamid Reza ESMAEILI, Halimeh ZAREIAN, Ali GHOAMHOSSEINI, Mehregan EBRAHIM, Zeinab GHOLAMI, Azad TEIMORI, Talat Hojat ANSARI