Fatty acid composition of selected Tissues of Unio elongatulus (Bourguignat, 1860) (Mollusca: bivalvia) collected from Tigris River, Turkey

Tatlısu midyesi Unio elongatulus’un tüm vücut dokusu ile bazı organlarının total lipit yağ asidi içeriği araştırıldı. Midyeler Haziran 2007 tarihinde Türkiye Dicle Nehri’nden toplandı. Midyenin bütün vücut dokusu ile seçilmiş organlarının yağ asidi içeriği gaz kromatografi (GC) ve gaz kromatografi-kütle spektrometre (GC-MS) ile analiz edildi. Analizlerde, C16:0, C16:1ω7, C18:1ω9, C20:1ω9, C20:4ω6 ve C20:5ω3 asitler yoğunlukta bulunan bileşenlerdi. Analiz edilen organlar (manto, solungaç, ayak ve tüm vücut) farklı ve karakteristik yağ asidi profili gösterdi. Solungaçta C16:1ω7 (%30,2), C16:0 (%17,4) asitler; mantoda C18:1ω9 (%20,3), C16:0 (%25,4) asitler; ayakta C16:0 (%20,8), C16:1ω7 (%15,9), C18:1ω9 (%15,4) asitler ve tüm vücut dokusunda ise C16:1ω7 (%27,6), C16:0 (%23,6) asitler en çok bulunan bileşenlerdi. Ayrıca eikosanoidlerin öncül maddesi olan C20:4ω6 ve C20:5ω3 asitlerin yüzde oranları, solungaç ve ayakta önemli oranda yüksek bulundu. Belirli organlardaki temel yağ asitlerinin organların spesifik fonksiyonları ile bağlantılı olduğu sanılmaktadır. Tüm doku analizlerinde, ΣTDYA oranı, ΣDYA ve ΣÇDYA oranlarından daha yüksekti.

Türkiye, Dicle Nehri’den toplanan Unio elongatulus (Bourguignat, 1860) (Mollusca: bivalvia)’un seçilmiş dokularının yağ asiti kompozisyonu

The total lipid, fatty acid content of some organs and whole specimen of freshwater mussel Unio elongatulus were investigated. The mussels were collected in July in 2007 from Tigris River, Turkey. Fatty acid content of selected tissues and whole mussel was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In the analyses, predominant fatty acids were C16:0, C16:1ω7, C18:1ω9, C20:1ω9, C20:4ω6 and C20:5ω3. Analyses of selected organs (mantle, gills, foot and whole body) presented different and characteristic fatty acids profiles. In the gills C16:1ω7 (30.2%), C16:0 (17.4%) acids; in the mantle C18:1ω9 (20.3%), C16:0 (25.4%) acids; in the foot C16:0 (20.8%), C16:1ω7 (15.9%), C18:1ω9 (15.4%) acids and in whole body C16:1ω7 (27.6%), C16:0 (23.6%) acids were the most abundant constituents. Also the percentages of C20:4ω6 and C20:5ω3 acids, precursors of eicosanoids, were apparently high in the gills and foot. It is presumed that the chief fatty acids present in a particular organ are related to specific functions of the organ. In all of the tissue analyses, ΣMUFA levels were higher than ΣPUFA and ΣSFA levels.

___

  • Ackman, R.G., Tocher, C.S. and McLachlan, J. 1968. Marine phytoplankton fatty acids. Journal of the Fisheries Research Board of Canada, 25: 1603-1620.
  • Alkanani, T., Parrish, C.C., Thompson, R.J. and McKenzie, C.H. 2007. Role of fatty acids in cultured mussels, Mytilus edulis, grown in Notre Dame Bay, Newfoundland. Journal of Experimental Marine Biology and Ecology, 348: 33-45.
  • Bashan, M., Akbas, H. and Yurdakoc, K. 2002. Phospholipid and triacylglycerol fatty acid composition of major life stages of sunn pest, Eurygaster integriceps (Heteroptera: Scutelleridae). Comparative Biochemistry and Physiology, 132: 375.
  • Beninger, P.G. and Stephan, G. 1985. Seasonal variations in the fatty acids of triacylglycerols and phospholipids of two populations of adult clam (Tapes decussatus L. and Tapes philippinarum) reared in a common habitat. Comparative Biochemistry and Physiology, 81(B): 591-601.
  • Bligh, E.G. and Dyer, W.J.A. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37: 911-917.
  • Caers, M., Coutteau, P., Lombeida, P. and Sorgeloos, P. 1998. The effect of lipid supplementation on growth and fatty acid composition of Tapes philippinarum spat. Aquaculture, 162: 287-299.
  • Chuecas, L. and Riley, J.P. 1969. Components fatty acids of total lipids of some marine phytoplankton. Journal of the Marine Biological Association of the United Kingdom, 49: 97-116.
  • Cotronea, A., Ziino, M., Alfa, M., Salvo, F. and Dogo, G. 1980. Scarti di pesca nell’alimentazione di Penaeus cherturus- Nota IV. Atti della Societa Peloritana Scienze Fisiche, Matematiche e Naturali, 26: 151-160.
  • De Moreno, J.E.A., Moreno, V.J. and Brenner, R.R. 1977. Lipids metabolism of the yellow clam, Mesodesma mactroides.3. Saturated fatty acids and acetate metabolism. Lipids, 12: 804-808.
  • Dembitsky, V.M., Kashin, A.G. and Stefanow, K. 1992. Comparative investigation of phospholipids and fatty acids of freshwater molluscs from Volga River Basin. Comparative Biochemistry and Physiology, 102(1): 193-198.
  • Dembitsky, V.M., Rezanka, T. and Kashin, A.G. 1993. Fatty acid and phospholipids composition of freshwater molluscs Anadonta piscinalis and Limnaea fragilis from the River Volga. Comparative Biochemistry and Physiology, 105(3-4): 597-601.
  • Deshimaru, O., Kuroki, K. and Yone, Y. 1979. The compositions and level of dietary lipid appropriate for growth of Prawn. Bull. The Japanese Society of Fisheries Science, 45: 591-594.
  • Dietz, T.H. and Graves, S.Y. 1981. Sodium influx in isolated gills of the freshwater mussel, Ligumia subrostrata. J. of Comp. Physiology, 143: 185-190.
  • Ekin, İ., Başhan, M. and Şeşen, R. 2008. Fatty acid composition of Dreissena siouffi (Bivalvia: Dreissenidae) collected from the Fırat River. Science and Engineering J. of Fırat Univ., 20(2): 243-250.
  • Fried, B., Rao, K.S., Sherma, J. and Huffmani, J.E. 1993. Fatty acid composition of Goniobasis virginica, Physa sp. and Viviparus malleatus (Mollusca: Gastropoda) from lake Musconetcong, New Jersey. Biochemical Systematic and Ecology, 21(8): 809-812.
  • Gardner, D. and Riley, J.P. 1972. The components fatty acids of the lipids of some species of marine and freshwater molluscs. Journal of the Marine Biological Association of the United Kingdom, 52: 827-838.
  • Hagar, A.F. and Dietz, T.H. 1986. Seasonal changes in the lipid composition of gill tissue from the freshwater mussel Carunculina texasensis. Physiological Zoology, 59(4): 419-428.
  • Johns, R.B., Nichols, P.D. and Perry, G.J. 1980. Fatty acid components of nine species of molluscs of the littoral zone from Australian waters. Comparative Biochemistry and Physiology, 65: 207-214.
  • Joseph, J.D. 1982. Lipid composition of marine and estuarine invertebrates. Part II: Mollusca. Progress in Lipid Research, 21: 109-153.
  • Khardin, A.S., Aizdaicher N.A. and Latyshev, N.A. 2003. Changes in fatty acid compositions of hepatopancreas of the mollusc Mytilus trossulus fed on microalgae. Russian Journal of Marine Biology, 29: 378-382.
  • Kharlamenko, V.I., Zhukova, N.V., Khotimchenko, S.V., Svetashev, V.I. and Kamenev, G.M. 1995. Fatty acids as markers of food sources in a shallow water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series, 120: 231-241.
  • Klingensmith, S.J. and Stillway, W.L. 1982. Lipid composition of selected tissues of hardshell clam Mercenaria mercenaria. Comparative Biochemistry and Physiology, 71: 111-112.
  • Milke, L.M., Bricelj, V.M. and Parrish, C.C. 2004. Growth of post larval sea scallops, Placopecten magellanicus, on microalgal diets, with emphasis on the nutritional role of lipids and fatty acids. Aquaculture, 224: 293-317.
  • Milke, L.M., Bricelj, V.M. and Parrish, C.C. 2006. Comparision of early life story stages of the bay scallop, Argopecten irradians: effects of microalgal diets on growth and biochemical composition. Aquaculture, 260: 272-289.
  • Misra, S., Ghosh, K.M., Choudhury, A., Dutta, K.A., Pal, K.P. and Ghosh, A. 1985. Fatty acids from Macoma sp. of bivalve mollusc. Journal of the Science of Food and Agriculture, 36: 1193-1196.
  • Morris, J.F., Culkin, F., Lockwood, A.P.M. and Jensen, A.C. 1983. Effect of Chlorination on the Gill Lipids of the Mussel Mytilus edulis. Chemical in Ecology, Gordon and Breach Science Publisher, New York, 173 pp.
  • Paradis, M. and Ackman, R.G. 1975. Occurrence and chemical structure of non-methylene-interrupted dienoic fatty acids in American oyster Crassostrea virginica. Lipids, 10: 12-16.
  • Paradis, M. and Ackman R.G. 1977. Potential for employing the distribution of anomalous nonmethyleneinterrupted dienoic fatty acids in several marine invertebrates as part of food wed studies. Lipids, 12: 170-176.
  • Parrish, C.C., DeFritas, A.S., Bodennec, G., MacPherson, E.J. and Ackman, R.G. 1991. Lipid composition of the toxic marine diatoms Nitzschis pungens. Phytochemistry, 30: 113-116.
  • Pazos, J.A., Ruiz, C., Martin, G.O., Abad, M. and Sanchez, L.J. 1996. Seasonal variation of the lipid content and fatty acid composition of Crassostrea gigas cultured in El Grove, Galicia, N.W. Spain. Comparative Biochemistry and Physiology, 114(2): 171-179.
  • Pazos, J.A., Sanches, L.J., Roman, G., Perez-Parelle, M.L. and Abad, M. 2003. Seasonal changes in lipid classes and fatty acids composition in digestive gland of Pecten maximus. Comparative Biochemistry and Physiology, 134: 367-380.
  • Piretti, M.V., Zuppa, F., Pagliuca, G. and Taioli, F. 1988. Variations of fatty acid constituents in selected tissues of the bivalve mollusc Scapharia inaequivaleis. Comparative Biochemistry and Physiology, 89(1): 183-187.
  • Pollero, R.J., Brenner, R.R. and Gros, G.E. 1981. Seasonal changes in lipid and fatty acid composition of the freshwater mollusc Diplodom patagonicus. Lipids, 16(2): 109-113.
  • Pollero, R.J., Irazu, C.E. and Brenner, R.R. 1983. Effect of sexual stage on lipids and fatty acids of Diplodon delodontus. Comparative Biochemistry and Physiology, 76: 927-931.
  • Rakshit, S., Bhattacharyya, K.D. and Misra, K.K. 1997. Distribution of major lipids and fatty acids of the estuarine gastropod mollusc Telescopium telescopium. Folia Biologica (Krakow), 45(1-2): 127-146.
  • Saintsing, D.G., Hwang, D.H. and Dietz, T.H. 1983. Production of prostaglandin E2 and F2α in the freshwater mussel Ligumia subrostrata: relation to sodium transport. Journal of Pharmacology and Experimental Therapeutics, 226: 455-461.
  • Sargent, J.R. 1976. The structure, metabolism and function of lipids in marine organisms. In: D.C. Malin and J.R. Sargent (Eds.), Biochemical and Biophysical Perspectives in Marine Biology Academic Press, London, 3: 149-212.
  • Spike, B.P., Wright, R.J., Danielson, S.D. and Stanley- Samuelson, D.W. 1991. The fatty acid compositions of phospholipids and triacylglycerols, from two chinch bug species Blissus leucopterus leucopterus and B. iowensis (Insecta; Hemiptera; Lygaeidae) are similar to the characteristic dipteran pattern. Comparative Biochemistry and Physiology, 99: 799-802.
  • Stanley-Samuelson, D.W. and Dadd, R.H. 1983. Long chain polyunsaturated fatty acids: Patterns of occurrence in insects. Biochemistry, 13: 549-558.
  • Thompson, S.N. 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology, 45: 467-482.
  • Trider, D.J. and Castell, J.D. 1980. Influence of neutral lipid on seasonal variation of total lipids in oysters Crassostrea virginica. Proceeding of the National Shellfisheries Association, 70: 112-118.
  • Voogt, P.A. 1983. Lipids: Their distribution and metabolism in the Mollusca. In: P.W. Hochachke (Ed.), Metabolic Biochemistry and Molecular Biomechanics Academic Press, New York: 329-370.
  • Watanabe, T. and Ackman, R.G. 1974. Lipids and fatty acids of the American (Crassostrea virginica) and European flat (Ostrea edulis) oysters from a common habitat and after one feeding with Dicrateria inornata or Isochrysis galbana. Journal of the Fisheries Research Board of Canada, 31: 403-409.
  • Wenne, R. and Polak, L. 1989. Lipid composition and storage in the tissues of the Macoma balthica. Biochemical Systematic and Ecology, 17: 583-587.
  • Williams, P.M. 1965. Fatty acids derived from lipids of marine origin. Journal of the Fisheries Research Board of Canada, 22: 1107-1122.
  • Zhukova, N.V. 1986. Biosynthesis of non-methylene interrupted dienoic fatty acids from [C14] acetate in molluscs. Biochemica et Biophysica Acta, 878: 131- 133.
  • Zhukova, N.V. 1991. The pathway of the biosynthesis of non-methylene-interrupted dienoic fatty acids in molluscs. Comparative Biochemistry and Physiology, 110: 801-804.
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Investigation of enteric bacteria of surface waters in the southwestern coast of Istanbul by means of GIS

Nüket SİVRİ, Dursun Zafer ŞİMŞEK

Effect of sublethal concentrations of fuel oil on the behavior and survival of Larvae and adults of the barnacle Balanus amphitrite amphitrite (Darwin)

Amna A. HASHIM

The first record of Exopalaemon styliferus (H. Milne-Edwards, 1840) (Decapoda: Caridea: Palaemonidae) from Iran

Parviz ZARE, Ebrahim GHASEMİ, Elham SARFARAZ

Fatty acid composition of selected Tissues of Unio elongatulus (Bourguignat, 1860) (Mollusca: bivalvia) collected from Tigris River, Turkey

İhsan EKİN, Mehmet BAŞHAN

The sensory quality of pearl mullet (chalcalburnus tarichi) fillets coated with different coating materials

Osman KILINÇÇEKER, Şükrü KURT

Harmful algal blooms (HABs) and black mussel mytilus galloprovincialis (Linnaeus, 1758) Culture in Izmir Bay (Iskele-Urla)-Turkey: preliminary results on the annual feeding cycle using a qualitative approach

Aynur LOK, Gülnur METİN, Sefa ACARLI, Philippe GOULLETQUER

Greenhouse cultivation of Gracilaria verrucosa (Hudson) Papenfuss and determination of chemical composition

Şükran CİRİK, Zerrin ÇETİN, İlknur AK SİVRİKOZ, Semara CİRİK, Tolga GÖKSAN

The effect of storage temperature on the chemical and sensorial quality of hot smoked Atlantic bonito (Sarda sarda, Bloch, 1838) packed in aluminium foil

Serkan KORAL, Sevim KÖSE, Bekir TUFAN

Occurrence of slender sunfish Ranzania Laevis pennant, 1776, (Molidae) in the eastern part of the Libyan coast (Southern Mediterranean)

Houssein ELBARAASİ, Osama ELSALİNİ

Cytogenetic analysis of Garra variabilis (Heckel, 1843) (Pisces, cyprinidae) from Savur stream (Mardin), Turkey

Arzu KARAHAN, Serap Ergene GÖZÜKARA