Gökkuşağı Alabalığı Oncorhynchus mykiss (Walbaum 1792)’in Keseli Larvalarında Antioksidan Enzim Aktiviteleri ve Bazı Biyokimyasal Değişimler

Bu çalışmada ticari olarak yetiştirilen gökkuşağı alabalığı Oncorhynchus mykiss (Walbaum 1792)'in keseli yavrularında, yumurtadan çıktıktan sonraki 19 gün boyunca antioksidan savunma ve biyokimyasal durum çalışıldı. Çalışılan parametreler: süperoksit dismutaz (SOD), katalaz (CAT), glutatyon peroksidaz (GSHpx), glutatyon redüktaz (GR) ve glutatyon-s-transferaz (GST)'dır. Oksidatif hasar malondialdehit (MDA) oluşumu ile ölçüldü. Sonuçlarımız yumurtaların açıldığı günden itibaren katalitik aktivitenin mevcut olduğunu ve larvalar endojen besini kullanırken, 12 ve 19 günlük keseli larvalarda bulunan enzimlerde önemli değişimlerin olduğunu gösterdi. Çalışmamız yumurtaların açılmasından sonraki 12. ve 19. günlerde katalaz aktivitesinde hızlı bir artma, aynı periyotta süperoksit dismutaz aktivitesinde ise hızlı bir azalma gösterdi. Glutatyon peroksidaz 19 günlük çalışma süresi boyunca düzenli bir şekilde azaldı. Glutatyon redüktaz 12 ve 19 günlük keseli larvalarda önemli bir artış gösterdi. Keseli safha boyunca glutatyon-s-transferaz aktivitesinde önemli bir değişim olmadı. 19. günde yumurta kesesinin emilimiyle total protein içeriği hızla düştü. 12 ve 19 günlük keseli larvalardaki PUFA içeriği, diğer keseli safhalardan yüksek bulundu

Antioxidant Enzyme Activities and Some Biochemical Changes in Rainbow Trout Oncorhynchus mykiss (Walbaum 1792) Yolk-Sac Larvae

In this work we studied the biochemical status of antioxidant defences of yolk-sac larvae from the commercial fish, rainbow trout Oncorhynchus mykiss (Walbaum 1792) over a period of 19 days from hatching. The parameters studied were: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHpx), glutathione reductase (GR) and glutathione Stransferase (GST). Oxidative damage was measured by the formation of malondialdehyde (MDA). Our results showed that the presence of catalytic activities was observed from hatching day and significant changes in the enzymes were seen in the 12 and 19 days yolk-sac larvae, when the larvae finished their endogenous feeding. Our study indicates that catalase activity sharply increased in the 12 and 19 days post-hatch but superoxide dismutase activity sharply decreased in the same period. Glutathione peroxidase regularly decreased with age throughout the 19-day study period. Glutathione reductase showed a significant increase in the 12 and 19 days yolk-sac larvae. There were no significant changes in glutathione S-transferase activity throughout the yolk-sac stage. When the egg yolk-sac was reabsorbed, the total protein content sharply decreased at day 19. The PUFA contents in the 12 and 19 days yolk-sac larvae were found to be higher than in the other yolk-sac stage

___

  • Aral, F., Şahinöz, E. and Doğu, Z. 2011. Embryonic and Larval Development of Freshwater Fish, Recent Advances in Fish Farms, Dr. Faruk Aral (Ed.), ISBN: 978-953-307-759-8, InTech, Available from: http://www.intechopen.com/books/recent-advancesin-fish-farms/embryonic-and-larval-developmentoffreshwater-fish
  • Bell, J. G., Cowey, C. B., Adron, J. W. and Shanks, A. M. 1985. Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri). British Journal of Nutrition, 53: 149–157. doi:http://dx.doi.org/10.1079/BJN19850019
  • Beers, R.F. and Sizer, I.W. 1952. Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195: 133– 140.
  • Chaudıere, J. and Ferrari-Ilıou, R. 1999. Intracellular antioxidants: from chemical to biochemical Mechanisms. Food and Chemical Toxicology, 37: 949–962. doi: 10.1016/S0278-6915(99)00090-3
  • Chen, J., Zhou, X., Feng, L., Liu, Y. and Jiang, J. 2009. Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp (Cyprinus carpio var. Jian). Aquaculture, 288(3): 285–289. doi:10.1016/j.aquaculture.2008.10.053
  • Christie, W.W. 1990. Gas chromatography and lipids. 302. The Oil Press: Glascow.
  • Cowey, C.B., Bell, J.G., Knox, D., Fraser, A. and Youngson, A. 1985. Lipids and lipid antioxidant systems in developing eggs of salmon (Salmo salar). Lipids, 20: 567–572. doi:10.1007/BF02534281
  • Dalton, T.P., Shertzer, H.G. and Puga, A. 1999. Regulation of gene expression by reactive oxygen. Annual Review of Pharmacology and Toxicology, 39: 67– 101. doi: 10.1146/annurev.pharmtox.39.1.67
  • Davies, K.J.A. 2000. Oxidative stress: the paradox of aerobic life. Biochem. Soc. Symp. 61: 1–31.
  • Díaz, M.E., Furné, M., Trenzado, C.E., García-Gallego, M., Domezain, A. and Sanz, A. 2010. Antioxidant defences in the first life phases of the sturgeon Acipenser naccarii. Aquaculture, 307: 123–129. doi:10.1016/j.aquaculture.2010.06.026
  • Farooqui, T. and Farooqui, A.A. 2012. Endogenous antioxidant defense mechanisms in vertebrates and invertebrates. In: Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling (Farooqui, T. & Farooqui, A.A. eds), pp. 379– 380. Wiley-Blackwell, Hoboken, NJ.
  • Fontagné, S., Bazin, D., Brèque, J., Vachot, C., Bernarde, C., Rouault, T. and Bergot, P. 2006. Effects of dietary oxidized lipid and vitamin A on the early development and antioxidant status of Siberian sturgeon (Acipenser baeri) larvae. Aquaculture, 257: 400–411. doi: 10.1016/j.aquaculture.2006.01.025
  • Fontagné, S., Lataillade, E., Brèque, J. and Kaushik, S. 2008. Lipid peroxidative stress and antioxidant defence status during ontogeny of rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition, 100: 102–111. PMID: 18062828
  • Froyland, L., Lie, O. and Berge, R.K. 2000. Mitochondrial and peroxisomal beta-oxidation capacities in various tissues from Atlantic salmon, Salmo salar. Aquaculture Nutrition, 6: 85–89. doi: 10.1046/j.1365- 2095.2000.00130.x
  • Fyhn, H.J. 1993. Multiple functions of free amino acids during embryogenesis in marine fishes. In: B.T. Walther and H.J. Fyhn (Eds.), Physiological and biochemical aspects of fish development. University of Bergen, Bergen, Norway: 299–308.
  • Gammanpila, M., Yakupitiyage, A. and Bart, A.N. 2007. Evaluation of the effects of dietary vitamin C, E and Zinc supplementation on reproductive performance of Nile tilapia (Oreochromis niloticus). Sri Lanka Journal of Aquatic Science. 12:39-60. doi: http://doi.org/10.4038/sljas.v12i0.2213
  • Gao, J., Koshio, S., Ishikawa, M., Yokoyama, S. and Mamauag, R.E.P. 2014. Interactive effects of vitamin C and E supplementation on growth performance, fatty acid composition and reduction of oxidative stress in juvenile Japanese flounder Paralichthys olivaceus fed dietary oxidized fish oil. Aquaculture, 422–423: 84–90. http://dx.doi.org/10.1016/j.aquaculture.2013.11.031.
  • Gawlicka, A., Parent, B., Horn, M. H., Ross, N., Opstad, I. and Torrissen, O. J. 2000. Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture, 184: 303–314. doi:10.1016/S0044-8486(99)00322-1
  • Gunasekera, R.M., De Silva, S.S. and Ingram, B.A. 2001.Chemical changes in fed and starved larval trout cod, Maccullochella macquarensis during early development. Fish Physiology and Biochemistry, 25: 255–268. doi: 10.1023/A:1023247718139
  • Halliwell, B. and Gutteridge, J.M.C. 2007. Free Radicals in Biology and Medicine, 4th Edition Oxford University Press.
  • Hara, A. and Radin, N.S. 1978. Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90: 420–426. doi:http://dx.doi.org/10.1016/0003- 2697(78)90046-5
  • Hoar, W.S. and Randall, D.J. 1988. The Physiology of developing fish. Part A. Eggs and Larvae. Academic Press, Inc (London) Ltd.
  • Janssens, B., Childress, J. J., Baguet, F. and Rees, J. 2000. Reduced enzymatic antioxidative defense in deep-sea fish. The Journal of Experimental Biology, 203: 3717– 3725. JEB3216
  • Jiang, W.D., Kuang, S.Y., Liu, Y., Jiang, J., Hu, K., Li, S.H., Tang, L., Feng, L. and Zhou, X.Q. 2013. Effects of myo-inositol on proliferation, differentiation, oxidative status and antioxidant capacity of carp enterocytes in primary culture. Aquaculture Nutrition, 19(1): 45–53. doi: 10.1111/j.1365-2095.2011.00934.x
  • Jiang, J., Zheng, T., Zhou, X.Q., Liu, Y. and Feng, L. 2009. Influence of glutamine and vitamin E on growth and antioxidant capacity of fish enterocytes. Aquaculture Nutrition, 15(4): 409–414. doi: 10.1111/j.1365- 2095.2008.00605.x
  • Johnston, T.A., Wiegand, M.D., Leggett, W.C., Pronyk, R.J., Dyal, S.D., Watchorn, K.E., Kollar, S. and Casselman, J.M. 2007. Hatching success of walleye embryos in relation to maternal and ova characteristics. Ecology of Freshwater Fish, 16: 295– 306. doi: 10.1111/j.1600-0633.2006.00219.x
  • Kalaimani, N., Chakravarthy, N., Shanmughan, R., Thirunavukkarasu, A.R., Alavandi, S.V., Santiago, T.C. 2008. Anti-oxidant status in embryonic, posthatch and larval stages of Asian seabass (Late calcarifer). Fish Physiology and Biochemistry, 34: 151–158. doi: 10.1007/s10695-007-9155-4
  • Katsanidis, E. and Addis, P.B. 1999. Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radical Biology and Medicine, 27: 1137–1140. doi:10.1016/S0891-5849(99)00205-1
  • Kiron, V., Thawonsuwan, J., Panigrahi, A., Scharsack, J.P. and Satoh, S. 2011. Antioxidant and immune defences of rainbow trout (Oncorhynchus mykiss) offered plant oils differing in fatty acid profiles from early stages. Aquaculture Nutrition, 17: 130-140. doi: 10.1111/j.1365-2095.2009.00715.x’
  • Lee, K.J. and Dabrowski, K. 2003. Interaction between vitamins C and E affects their tissue concentrations, growth, lipid oxidation, and deficiency symptoms in yellow perch (Perca flavescens). British Journal of Nutrition, 89: 589–596. doi: 10.1079/BJN2003819
  • Leggatt, R.A. and Iwama, G.K. 2009. Exogenous glutathione can increase glutathione levels in tissues of rainbow trout (Oncorhynchus mykiss) through extracellular breakdown and intracellular synthesis. Comparative Biochemistry and Physiology, Part C 150: 322–328. doi:10.1016/j.cbpc.2009.05.010.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193: 265–275.
  • Lushchak,V.I. 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. ChemicoBiological Interactions, 224: 164–175. doi: http://dx.doi.org/10.1016/j.cbi.2014.10.016
  • Marks, D.B., Marks, A.D. and Smith, C.M. 1996. Oxygen metabolism and toxicity, in Basic Medical Biochemistry: A Clinical Approach. Williams and Wilkins. Baltimore MD. pp. 327–340.
  • Martínez-Álvarez, R.M., Morales, A.E. and Sanz, A. 2005. Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 15: 75–88. doi:10.1007/s11160-005-7846-4
  • Matés, J.M. 2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 153: 83–104. PII: S0300- 483X(00)00306-1
  • Mourente, G., Bell, J.G. and Tocher, D.R. 2007. Does dietary tocopherol level affect fatty acid metabolism in fish? Fish Physiology and Biochemistry, 33(3): 269–280. doi 10.1007/s10695-007-9139-4
  • Mourente, G., Díaz-Salvago, E., Tocher, D.R. and Bell, J.G. 2000. Effects of dietary polyunsaturated fatty acid/vitamin E (PUFA/tocopherol ratio) on antioxidant defence mechanisms of juvenile gilthead sea bream (Sparus aurata L., Osteichthyes, Sparidae). Fish Physiology and Biochemistry, 23: 337–351. doi:10.1023/A:1011128510062
  • Mourente, G., Tocher, D. R., Diaz, E., Grau, A. and Pastor, E. 1999. Relationships between antioxidants, antioxidant enzyme activities and lipid peroxidation products during early development in Dentex dentex eggs and larvae. Aquaculture, 179: 309–324. doi:10.1016/S0044-8486(99)00167-2
  • Mourente, G. and Vazquez, R. 1996. Changes in the content of total lipid, lipid classes and their fatty acids of developing eggs and unfed larvae of the Senegal sole, Solea senegalensis Kaup. Fish Physiology and Biochemistry, 15(3): 221–235. doi: 1007/BF01875573
  • Neeraj, Pramod, J., Singh, S. and Singh, J. 2013. Antioxidants to the rescue of cell under invasion of free radicals – a review. International Journal of Basic and Applied Medical Sciences, 3(2): 190-200. ISSN: 2277-2103.
  • Palace, V.P., Majewski, H.S. and Klaverkamp, J.F. 1993. Interactions among antioxidant defenses in liver of rainbow trout (Oncorhynchus mykiss) exposed to cadmium. Canadian Journal of Fisheries and Aquatic Sciences, 50: 156–162. doi:10.1139/f93–018
  • Panchenko, L.F., Brusov, O.S., Gerasimov, A.M. and Loktaeva, T.D. 1975. Intramitochondrial localization and release of rat liver superoxide dismutase. Febs Letters, 55: 84–87. doi:10.1016/0014-5793(75)80964- 1
  • Parra, G., Rønnestad, I. and Yufera, M. 1999. Energy metabolism in eggs and larvae of the Senegal sole. Journal of Fish Biology, 55: 205–214. doi: 10.1111/j.1095-8649.1999.tb01056.x
  • Pesonen, M., Andersson, T.B., Sorri, V. and Korkalainen, M. 1999. Biochemical and ultrastructural changes in the liver of baltic salmon sac fry suffering from high mortality (m74). Environmental Toxicology and Chemistry, 18(5): 1007–1013. doi:10.1002/etc.5620180528
  • Polat, A., Conceicao, L., Sarıhan, E. and Verreth, J. 1995. The protein, lipid and energy metabolism in eleuthero-embryos and starving larvae of the Afican catfish Clarieas gariepinus (Burchell). ICES Mar Symp. Series, 201: 74–79.
  • Puangkaew, J., Viswanath Kiron, T., Satoh, S. and Watanabe, T. 2005. Antioxidant defense of rainbow trout (Oncorhynchus mykiss) in relation to dietary n-3 highly unsaturated fatty acids and vitamin E contents. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 140(2): 187–196. PMID: 15907764
  • Rabideau, C.L. 2001. Pesticide mixtures induce immunotoxicity: potentiation of apoptosis and oxidative stress. Masters of Science in Veterinary Medical Sciences, Environmental Toxicology Department of Biomedical Sciences and Pathobiology Virginia-Maryland Regional College of Veterinary Medicine Blacksburg, Virginia
  • Radi, A.A.R., Matkovics, B. and Csengeri, I. 1987. Comparative studies of the phospholipid fatty acids and the antioxidant enzyme activities in fish with different feeding habits. Comparative Biochemistry and Physiology, 87B: 49–54. doi:10.1016/0305- 0491(87)90469-X
  • Rahman, K. 2007. Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging, 2(2): 219-236. PMID: 18044138
  • Rahman, M.M., Miah, M.I., Taher, M.A., Hasan, M.M. 2009. Embryonic and larval development of guchibaim, Mastacembelus pancalus (Hamilton). Journal of the Bangladesh Agricultural University, 7(1): 193–204. doi: 10.3329/jbau.v7i1.4984
  • Ritola, O., Livingstone, D.R., Peters, L.D., and LindströmSeppä, P. 2002. Antioxidant processes are affected in juvenile rainbow trout (Oncorhynchus mykiss) exposed to ozone and oxygen-supersaturated water. Aquaculture, 210: 1–19. PII: S0044-8486(01)00823-7
  • Ronnestad, I. and Fyhn, H.J. 1993. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Reviews in Fisheries Science, 1: 239–259.
  • Salih, A.M., Smith, D.M., Price, J.F. and Dawson, L.E. 1987. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poultry Science, 66: 1483–1488. doi:10.3382/ps.0661483.
  • Sargent, J., Henderson, R.J. and Tocher, D.R. 1989. The lipids. In:Halver, J.E. (Ed.), Fish Nutrition, 2nded., pp. 154–209.
  • Sargent, J.R. 1995. Origins and functions of lipids in fish eggs: nutritional implicitiations. In: N.R. Bromage and R.J. Roberts (Eds.), Broodstock Management and Egg and Larval Quality. Blackwell Scientific Publications, Oxford: 353–372.
  • Solé, M., Potrykus, J., Fernández-Díaz, C. and Blasco, J. 2004. Variations on stress defences and metallothionein levels in the Senegal sole, Solea senegalensis, during early larval stages. Fish Physiology and Biochemistry, 30: 57–66. doi: 10.1007/s10695-004-6786-6
  • Stene, A. and Lönning, S. 1984. Effects of 2- methylnaphthalene on eggs and larvae of six marine fish species. Sarsia. 69: 199 – 203.
  • Stéphan, G., Guillaume, J. and Lamour, F. 1995. Lipid peroxidation in turbot (Scophthalmus maximus) tissue: effect of dietary vitamin E and dietary n-6 and n-3 polyunsaturated fatty acids. Aquaculture, 130: 251– 268. doi:10.1016/0044-8486(94)00322-F
  • Stephensen, E., Sturve, J. and Förlin, L. 2002. Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comparative Biochemistry and Physiology Part C, 133: 435–442. doi:10.1016/S1532- 0456(02)00129-1
  • Şahinöz, E., Doğu, Z. and Aral, F. 2007. Embryonic and Pre-larval Development of Shabbout (Barbus grypus H.). The Israeli Journal of Aquacultre, Bamidgeh, 59(4): 235–238. doi: http://hdl.handle.net/10524/19233
  • Teare, J.P., Punchard, N.A., Powell, J.J., Lumb, P.J., Mitchel, W.D. and Thompson, R.P.H. 1993. Automated spectrophotometric method for determining oxidized and reduced glutathione in liver. Clinical Chemistry, 39(4): 686–689.
  • Tocher, D.R. 2010. Metabolism and functions of lipids and fatty acids in teleost fish. First published on: 24 June 2010.
  • Valko, M., Izakovic, M., Mazur, M., Rhodes, C.J and Telser, J. 2004. Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, 266: 37–56. PMID: 15646026
  • Verreth, J., Polat, A., van Herwaarden, H., Conceicao, L. and Huisman, E. 1995. A comparison of methods to study energy resource partitioning in early life stages of freshwater fish, with special reference to the African catfish Clarias gariepinus (Burchell). ICES Mar Symp Series. 201: 57–63.
  • Von Westernhagen, H. 1988. Sublethal effects of pollutants on fish eggs and larvae. Vol:11, In: Hoar, W. S., Randall, D. J. (Eds.), pp. 253–346. Fish Physiology. The Physiology of Developing Fish, Part A, Eggs and Larvae. Academic Press Inc, San Diego.
  • Wiegand, M.D., Kitchen, C.L. and Hataley, J.M. 1991. Incorporation of yolk fatty acids into body lipids of goldfish (Carassius auratus L.) larvae raised at two different temperatures. Fish Physiology and Biochemistry, 9:3: 199–213. doi: 10.1007/BF02265141
  • Wiegand, M.D. 1996. Utilization of yolk fatty acids by goldfish embryos and larvae. Fish Physiology and Biochemistry, 15(1): 21–27. doi: 10.1007/BF01874834
  • Yu, B.P. 1994. Cellular defenses against damage from reactive oxygen species. Physiological Reviews, 74: 139–162. http://dx.doi.org/10.1097/MNH.0b013e328330d9d0
  • Zengin, H. and Akpınar, M.A. 2006. Fatty acid composition of Oncorhynchus mykiss during embryogenesis and other developmental stages. Biologia, 61 (3): 305– 311. Bratislava. http://dx.doi.org/10.2478/s11756- 006-0056-2.
  • Zengin, H., Vural, N. and Çelik, V.K. 2013. Comparison of Changes in Fatty Acid Composition of Starved and Fed Rainbow Trout, (Oncorhynchus mykiss) Larvae. Turkish Journal of Fisheries and Aquatic Sciences, 13: 397–405. doi: 10.4194/1303-2712-v13_3_02
  • Zengin, H., Yılmaz, Ö., Demir, E. and Gökçe, Z. 2015. Antioxidant enzymatic defences during embryogenesis of rainbow trout Oncorhynchus mykiss (Walbaum 1792). Turkish Journal of Fisheries and Aquatic Sciences, 15: 443–452. doi: 10.4194/1303- 2712-v15_2_30
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Effects of Surgical Implanted Dummy Ultrasonic Transmitters on Biochemical Parameters of Silver Carp Hypophthalmichthys Molitrix

Xinbin DUAN, Lixiong YU, Hongwei LUO, Ke WANG, Daqing CHEN, Shaoping LİU

Doğu Akdeniz Dip Trol Balıkçılığında Dört Tür İçin Ticari ve Alternatif Torbaların Seçiciliği

HAKKI DERELİ, CELALETTİN AYDIN

Structural Analysis of the Erythrocytes of Channa punctatus (Bloch) exposed to Mercuric Chloride using Scanning Electron Microscopy

Shweta MAHESHWARİ, Anish DUA

A Preliminary Study on Sperm Morphology, Motility and Composition of Seminal Plasma of Shirbot, Barbus grypus

Mojgan KHODADADİ, Aida ARAB, Amir JAFERİAN

A Preliminary Study on Protease Activity of Russian Sturgeon, Acipencer gueldenstaedtii Brandt and Ratzenburg, 1833, at Early Life Stages

CEMİL KAYA GÖKÇEK, Tamás SZABÓ

Gökkuşağı Alabalığı Oncorhynchus mykiss (Walbaum 1792)’in Keseli Larvalarında Antioksidan Enzim Aktiviteleri ve Bazı Biyokimyasal Değişimler

HATAYİ ZENGİN, Ökkeş YILMAZ, ZEHRA GÖKÇE, ERSİN DEMİR

Size-Selectivity of Trammel Nets for Two Herbivorous Fish Species in Coral Reef Fisheries of Jeddah, Saudi Arabia

Mohamed Hosny GABR, Ahmad Osman MAL

Correlation of Phytoplankton Biomass (Chlorophyll-a) and Nutrients with the Catch Per Unit Effort in the PFZ Forecast Areas of Northern Bay of Bengal during Simultaneous Validation of Winter Fishing Season

Sachinandan DUTT, Abhra CHANDA, Anirban AKHAND, Sugata HAZRA

Seminemacheilus lendlii (Hanko, 1925) (Teleostei: Nemacheilidae)’nin Sitogenetik Analizi

SEVGİ ÜNAL KARAKUŞ, MURADİYE KARASU AYATA, MUHAMMET GAFFAROĞLU

Humane Slaughter of Carp – A Comparison between Three Stunning Procedures

Aleksandra DASKALOVA, Alexander PAVLOV, Ralica KYUCHUKOVA, Hristo DASKALOV