17,5 tuzluluk, >30m derinlik), tip su kütlesi için var olan zaman serisi verileri kullanılmıştır. Sinop ve Sürmene önlerinde sırasıyla 2002-2010 ve 2001-2011 yılları arasında gerçekleştirilen zaman serisi çalışmalarının yüzey klorofil-a verileri kullanılarak ekolojik kalite durumu belirlenmiştir. Uzun dönemli zaman serisi çalışmalarında klorofil-a nın referans ve sınıf sınır değerleri yüzdebirlik (90th percentale) metodu kullanılarak tanımlanmıştır. Fitoplankton biyokütlesinin mevsimsel farklılıklar göstermesinden dolayı sınıflandırma yıllık olarak yapılmasının yanı sıra mevsimsel olarakda geliştirilmiştir. Yüksek / İyi (H/G) ve İyi / Orta (G/M) su kalitesi sınıfı sınır değerleri Sürmene ve Sinop bölgeleri için uzun dönemli veri setlerinden mevsimlik olarak belirlenmiştir. Bütün sınıf sınır değerleri Sinop bölgesinde daha yüksek olarak gözlenmiştir. Ekolojik Kalite Oranları (EQR) 0-1 aralığında değişim göstermiştir. Sınıf sınır değerlerinin <30m ve <17,5 tuzluluğa sahip kıyı bölgelerinde daha yüksek olarak gözleneceği aşikardır. Ancak elimizde bu su kütleleri için veri seti mevcut değildir. Ekolojik kalite sınıflandırılması için sadece klorofil-a nın kullanılması çok geçerli gibi görülmesede yapılan ekolojik kalite sınıflandırmasının güney doğu Karadenizin 30m den derin suları için zamansal ve mekansal açıdan güvenilir bir yaklaşım olduğu değerlendirilmiştir Benthic macroinvertebrates, macroalgae and phytoplankton constitute the Biological Quality Elements (BQE) proposed in the Water Framework Directive (WFD, 2000/60/EC) to be used for the classification of the ecological status of a water body. Chlorophyll-a is a usefull expression of phytoplankton biomass and this indicator is an effective and relevant BQE for coastal ecosystems which is universally accepted. In the present study, interpretations of the class boundaries according to normative definitions of WFD, are presented for chlorophyll-a in South Eastern (SE) Black Sea. Water quality classification was determined in five different categories as "high, good, moderate, poor and bad". The coastal waters of SE Black Sea were classified in 8 different typologies (K1-K8) based on depth, salinity and substratum types. In this study, types K1 and K2 (>17,5 salinity, >30m depth) were considered because of availability of time-series data for those typologies. Sinop and Sürmene sites were selected due to the best available long-term chlorophyll-a data set, respectively over the period of 2002-2010 and 2001-2011 for chlorophyll-a respectively. Type specific chlorophyll-a (Chl-a) reference and threshold values were determined based on the 90th percentile of the long-term collected chlorophyll data set. Due to the high seasonal variability of phytoplankton biomass, the annual values were not considered adequate and the classification tool was developed on seasonal basis. The High/Good (H/G) and Good/Moderate (GM) boundaries were defined as seasonal from the long term data sets for Sürmene and Sinop sites. All the boundaries were higher at the Sinop site. Ecological quality ratios distributed between 0-1. It would be necessary to underline the fact that these class boundaries might be higher for waters where depths are below 30 m and salinity values are less than 17.5. However, there is not enough data to support this assumption for the near coast waters of the SE Black Sea. Eventhough Chl-a scaling can not be used as a single tool for the ecological quality classification it is a reliable approach to use the obtained boundaries at temporal and spatial scales for the quality classification of SE Black Sea waters above 30 m depth."> [PDF] Establishing Boundary Classes for the Quality Classification of Southeastern Black Sea Using Phytoplankton Biomass | [PDF] 17,5 tuzluluk, >30m derinlik), tip su kütlesi için var olan zaman serisi verileri kullanılmıştır. Sinop ve Sürmene önlerinde sırasıyla 2002-2010 ve 2001-2011 yılları arasında gerçekleştirilen zaman serisi çalışmalarının yüzey klorofil-a verileri kullanılarak ekolojik kalite durumu belirlenmiştir. Uzun dönemli zaman serisi çalışmalarında klorofil-a nın referans ve sınıf sınır değerleri yüzdebirlik (90th percentale) metodu kullanılarak tanımlanmıştır. Fitoplankton biyokütlesinin mevsimsel farklılıklar göstermesinden dolayı sınıflandırma yıllık olarak yapılmasının yanı sıra mevsimsel olarakda geliştirilmiştir. Yüksek / İyi (H/G) ve İyi / Orta (G/M) su kalitesi sınıfı sınır değerleri Sürmene ve Sinop bölgeleri için uzun dönemli veri setlerinden mevsimlik olarak belirlenmiştir. Bütün sınıf sınır değerleri Sinop bölgesinde daha yüksek olarak gözlenmiştir. Ekolojik Kalite Oranları (EQR) 0-1 aralığında değişim göstermiştir. Sınıf sınır değerlerinin <30m ve <17,5 tuzluluğa sahip kıyı bölgelerinde daha yüksek olarak gözleneceği aşikardır. Ancak elimizde bu su kütleleri için veri seti mevcut değildir. Ekolojik kalite sınıflandırılması için sadece klorofil-a nın kullanılması çok geçerli gibi görülmesede yapılan ekolojik kalite sınıflandırmasının güney doğu Karadenizin 30m den derin suları için zamansal ve mekansal açıdan güvenilir bir yaklaşım olduğu değerlendirilmiştir"> 17,5 tuzluluk, >30m derinlik), tip su kütlesi için var olan zaman serisi verileri kullanılmıştır. Sinop ve Sürmene önlerinde sırasıyla 2002-2010 ve 2001-2011 yılları arasında gerçekleştirilen zaman serisi çalışmalarının yüzey klorofil-a verileri kullanılarak ekolojik kalite durumu belirlenmiştir. Uzun dönemli zaman serisi çalışmalarında klorofil-a nın referans ve sınıf sınır değerleri yüzdebirlik (90th percentale) metodu kullanılarak tanımlanmıştır. Fitoplankton biyokütlesinin mevsimsel farklılıklar göstermesinden dolayı sınıflandırma yıllık olarak yapılmasının yanı sıra mevsimsel olarakda geliştirilmiştir. Yüksek / İyi (H/G) ve İyi / Orta (G/M) su kalitesi sınıfı sınır değerleri Sürmene ve Sinop bölgeleri için uzun dönemli veri setlerinden mevsimlik olarak belirlenmiştir. Bütün sınıf sınır değerleri Sinop bölgesinde daha yüksek olarak gözlenmiştir. Ekolojik Kalite Oranları (EQR) 0-1 aralığında değişim göstermiştir. Sınıf sınır değerlerinin <30m ve <17,5 tuzluluğa sahip kıyı bölgelerinde daha yüksek olarak gözleneceği aşikardır. Ancak elimizde bu su kütleleri için veri seti mevcut değildir. Ekolojik kalite sınıflandırılması için sadece klorofil-a nın kullanılması çok geçerli gibi görülmesede yapılan ekolojik kalite sınıflandırmasının güney doğu Karadenizin 30m den derin suları için zamansal ve mekansal açıdan güvenilir bir yaklaşım olduğu değerlendirilmiştir Benthic macroinvertebrates, macroalgae and phytoplankton constitute the Biological Quality Elements (BQE) proposed in the Water Framework Directive (WFD, 2000/60/EC) to be used for the classification of the ecological status of a water body. Chlorophyll-a is a usefull expression of phytoplankton biomass and this indicator is an effective and relevant BQE for coastal ecosystems which is universally accepted. In the present study, interpretations of the class boundaries according to normative definitions of WFD, are presented for chlorophyll-a in South Eastern (SE) Black Sea. Water quality classification was determined in five different categories as "high, good, moderate, poor and bad". The coastal waters of SE Black Sea were classified in 8 different typologies (K1-K8) based on depth, salinity and substratum types. In this study, types K1 and K2 (>17,5 salinity, >30m depth) were considered because of availability of time-series data for those typologies. Sinop and Sürmene sites were selected due to the best available long-term chlorophyll-a data set, respectively over the period of 2002-2010 and 2001-2011 for chlorophyll-a respectively. Type specific chlorophyll-a (Chl-a) reference and threshold values were determined based on the 90th percentile of the long-term collected chlorophyll data set. Due to the high seasonal variability of phytoplankton biomass, the annual values were not considered adequate and the classification tool was developed on seasonal basis. The High/Good (H/G) and Good/Moderate (GM) boundaries were defined as seasonal from the long term data sets for Sürmene and Sinop sites. All the boundaries were higher at the Sinop site. Ecological quality ratios distributed between 0-1. It would be necessary to underline the fact that these class boundaries might be higher for waters where depths are below 30 m and salinity values are less than 17.5. However, there is not enough data to support this assumption for the near coast waters of the SE Black Sea. Eventhough Chl-a scaling can not be used as a single tool for the ecological quality classification it is a reliable approach to use the obtained boundaries at temporal and spatial scales for the quality classification of SE Black Sea waters above 30 m depth.">

Establishing Boundary Classes for the Quality Classification of Southeastern Black Sea Using Phytoplankton Biomass

Bentik makro omurgasızlar, makroalg ve fitoplanktonlar Su Çerçeve Direktifinde (SÇD, 2000/60 / EC) önerilen Biyolojik Kalite Elemanları (BQE) olup, su kütlesinin ekolojik statü sınıflandırılmasında kullanılmaktadırlar. Klorofil-a fitoplankton biyokütle göstergesidir, ve bu gösterge evrensel olarak kıyı ekosistemleri için etkili ve uygun bir Biyolojik Kalite Elamanıdır. Bu çalışmada, Güney Doğu Karadeniz için SÇD'nin tanımlamalarına göre klorofil-a sınıf sınır değerleri hesaplanmıştır. Su kalitesi sınıf sınır değerleri " yüksek kalite, iyi, orta, zayıf ve kötü" gibi beş farklı kategoride belirlenmiştir. Güney Doğu Karadeniz kıyı suları derinlik, tuzluluk ve sediman karakteristiğine göre 8 farklı tipolojide (K1-K8) sınıflandırılmıiştır. Bu çalışmada, K1 ve K2 (>17,5 tuzluluk, >30m derinlik), tip su kütlesi için var olan zaman serisi verileri kullanılmıştır. Sinop ve Sürmene önlerinde sırasıyla 2002-2010 ve 2001-2011 yılları arasında gerçekleştirilen zaman serisi çalışmalarının yüzey klorofil-a verileri kullanılarak ekolojik kalite durumu belirlenmiştir. Uzun dönemli zaman serisi çalışmalarında klorofil-a nın referans ve sınıf sınır değerleri yüzdebirlik (90th percentale) metodu kullanılarak tanımlanmıştır. Fitoplankton biyokütlesinin mevsimsel farklılıklar göstermesinden dolayı sınıflandırma yıllık olarak yapılmasının yanı sıra mevsimsel olarakda geliştirilmiştir. Yüksek / İyi (H/G) ve İyi / Orta (G/M) su kalitesi sınıfı sınır değerleri Sürmene ve Sinop bölgeleri için uzun dönemli veri setlerinden mevsimlik olarak belirlenmiştir. Bütün sınıf sınır değerleri Sinop bölgesinde daha yüksek olarak gözlenmiştir. Ekolojik Kalite Oranları (EQR) 0-1 aralığında değişim göstermiştir. Sınıf sınır değerlerinin

Benthic macroinvertebrates, macroalgae and phytoplankton constitute the Biological Quality Elements (BQE) proposed in the Water Framework Directive (WFD, 2000/60/EC) to be used for the classification of the ecological status of a water body. Chlorophyll-a is a usefull expression of phytoplankton biomass and this indicator is an effective and relevant BQE for coastal ecosystems which is universally accepted. In the present study, interpretations of the class boundaries according to normative definitions of WFD, are presented for chlorophyll-a in South Eastern (SE) Black Sea. Water quality classification was determined in five different categories as "high, good, moderate, poor and bad". The coastal waters of SE Black Sea were classified in 8 different typologies (K1-K8) based on depth, salinity and substratum types. In this study, types K1 and K2 (>17,5 salinity, >30m depth) were considered because of availability of time-series data for those typologies. Sinop and Sürmene sites were selected due to the best available long-term chlorophyll-a data set, respectively over the period of 2002-2010 and 2001-2011 for chlorophyll-a respectively. Type specific chlorophyll-a (Chl-a) reference and threshold values were determined based on the 90th percentile of the long-term collected chlorophyll data set. Due to the high seasonal variability of phytoplankton biomass, the annual values were not considered adequate and the classification tool was developed on seasonal basis. The High/Good (H/G) and Good/Moderate (GM) boundaries were defined as seasonal from the long term data sets for Sürmene and Sinop sites. All the boundaries were higher at the Sinop site. Ecological quality ratios distributed between 0-1. It would be necessary to underline the fact that these class boundaries might be higher for waters where depths are below 30 m and salinity values are less than 17.5. However, there is not enough data to support this assumption for the near coast waters of the SE Black Sea. Eventhough Chl-a scaling can not be used as a single tool for the ecological quality classification it is a reliable approach to use the obtained boundaries at temporal and spatial scales for the quality classification of SE Black Sea waters above 30 m depth.

___

Alkan, A., Zengin, B., Serdar, S., Oğuz, T. 2013. Long- Term Chlorophyll-a Variations at a Southeastern Coastal Site of the Black Sea Turkish Journal of Fisheries and Aquatic Sciences 13:57-68. doi:10.4194/1303-2712- v13-1-08 Salinity and

Anderden, J.H., Conley D.J., Hedal S. 2004. Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. Mar. doi:10.1016/j.marpolbul.2004.04.014 49. 283-290.

Anon., 2003. Principles and methods for establishing reference conditions and ecological status class boundaries for inland surface waters. Policy Summary to the REFCOND Guidance Document. CIS Working Group 2.3. Ærtebjerg, G., Andersen, J.H., Hansen, O.S. (Eds.).

Boyer, J.N., Kelble, C., Ortner, P.B., Rudnick, D.T. 2009. Phytoplankton bloom status: Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecological Indicators 9s 56-67.

Demidov, A. B. 1999. Spatial and temporal variability of chlorophyll ,,a" in the Black Sea in the winter-spring period, Oceanology, 39, pp: 688-700.

Devlin, M., Best, M., Coates, M., Bresnan, E., O"Boyle, S., Park, R., Silke, J.,. Cusack, C., Skeats, J. 2007. Establishing classification phytoplankton Bulletin doi:10.1016/j.marpolbul.2006.09.018 for the using marine waters Marine Pollution 91-103. 55:

EC/JRC-IES, 2009. Environment and Sustainability Inst. Envir.Sust. JRC EC. 93p.

Eker, E., Georgieva, L., Senichkina, L. and Kideys, A.E. 1999. Phytoplankton distribution in the western and eastern Black Sea in spring and autumn 1995, ICES J. Mar. Sci., 56 Supplement, 15-22.

Eker-Develi, E., and Kideys, A.E. 2003. Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998, J. Mar. Syst., 39, 203- 211. doi:10.1016/S0924-7963(03)00031-9

Finenko, Z., Z. 1965. Primary production of the Black and Azov Seas as well as the tropical part of the Atlantic Ocean, PhD thesis, Byelorussian State University, Minsk (in Russian).

Finenko, Z., Z., Krupatkina, D.K., 1993. Primary production in the Black Sea during winter-spring period. Oceanology 33: 94-104.

Flo E., Camp J., Garcés E., 2011. Assessment Pressure methodology, Land Uses Simplified Index (LUSI), BQE Phytoplankton; Spain - Catalonia

GIG (Geographical Intercalibration Group) Black Sea, 2011. WFD Intercalibration Phase 2: Milestone 4b report EC-JRC 73p.

Harding, L., 1994. Long term trends in the distribution of phytoplankton in Chesapeake Bay: roles of light, nutrients and streamflow. Marine Ecology Progress Series 104, 267-291.

Harding Jr., L.W. and Perry, E.S., 1997. Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950- 1994. Marine Ecology Progress Series 157: 39-52. Jeffrey, S.W, spectrophotometric chlorophyll a, b, c1 and c2 in higher natural phytoplankton. Bioch Physiol Pflanz (BPP) 165:191-194. G.F. 1975. New equations for determining plants and

Kopelevich, O.V., Sheberstov, S.V., Yunev, O., Basturk, O., Finenko, Z.Z., Nikonov S., Vedernikov, V.I. 2002. Surface chlorophyll in the Black Sea over 1978-86 derived from satellite and in situ data. J. Mar. Systems, 36, 145-160.

Krupatkina, D., K., Finenko, Z., Z., Shalapyonok, A., A. 1991. Primary production and size-fractionated structure of the Black Sea phytoplankton in the winter-spring period, Mar Ecol Prog Ser 73, pp:25- 31.

Llewellyn, C., Fishwick, J., Blackford, J. 2005. Phytoplankton community assemblage in the English Channel: a comparison using chlorophyll a derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. J Plankton Res.;27: 103-119. doi:10.1093/plankt/fbh158. Mediterranean Geographical

Intercalibration Group

(MEDGIG), 2011. Water Framework Directive 2nd

Intercalibration Phase: Milestone 5 report.

Moncheva, S., Dontcheva, V., Shtereva, G., Kamburska, L., Malej, A. and Gorinstein, S.2002. Application of eutrophication indices for assessment of the Bulgarian Black Sea coastal ecosystem ecological quality. Water Science and Technology Vol 46, No:8, pp16-28.

Oğuz, T., Latun, V.S., Latif, M.A., Vladimirov, V.V., Sur, H.I., Markov, A.A.,Özsoy, E., Kotovshchikov, B.B., Eremeev, V.V., Ünlüata Ü. 1993: Circulation in the surface and intermediate layers of the Black Sea. Deep doi:10.1016/0967-0637(93)90018-X. 40 (8), 1597-1612.

Oğuz, T. and Velikova, V. 2010 Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Mar. Ecol. Prog. Ser., 405: 231-242. doi: 10.3354/meps08538

Oleg A. Y., Carstensen J., Moncheva, S., Khaliulin, A., Ærtebjerg, G., Nixon, S. 2007 Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes Estuarine Coastal and Shelf Science; 74(1):63-76. doi:10.1016/j.ecss.2007.03.030.

Romero, I., Paches, M., Martinez-Guijarro,R., Ferrer, J., 2013. Glophymed: An index to establish the ecological status for the Water Framework Directive based on phytoplankton in coastal waters, Marine Pollution Bulletin, 75 p. 218-223

Tan, İ., Polat-Beken, Ç., Öncel, S., 2015. Pressure-impact analysis for the coastal waters of Marmara Sea (in preparation).

TUBITAK-MRC and MoEU-GDEM, 2014. Marine and Coastal Waters Quality Determination and Classification Project (DeKoS). ÇTÜE 5118703, Report No. ÇTÜE.13.155 (Final Report), February 2014, Gebze-Kocaeli, Turkey.

Vasiliu, D.L., Boicenco, M.T., Gomoiu, L., Lazar and Mihailov, M.E. 2012. Temporal variation of surface chlorophyll-a in the Romanian near-shore waters. Medit. Mar. Sci., 13(2): 213-226.

Vedernikov, V. I., Konovalov, B. V., Koblents-Mishke, O. I. 1983. Seasonal variations of phytoplankton pigments in the near-shore waters of the northeastern Black Sea, In: Sorokin, Y., Vedernikov, V., I., (eds), Seasonal variations of the Black Sea plankton, Nauka, Moscow, pp: 66-84..

Vedernikov, V. I. 1989. Primary production and chlorophyll in the Black Sea in the summer-fall season, In: Vinogradov, M., E, Fliut, M., V., (eds), The structure and communities in the Black Sea, Nauka, Moscow, pp: 65-83. of plankton

Vedernikov, V. I., Demidov, A., B. 1993. Primary production and chlorophyll in deep regions of the Black Sea, Oceanology, 33, pp: , 193-199.

Vinogradov, M.E., Shushkina, E.A., Mikaelyan, A.S. and. Nezlin, N.P. 1999. Temporal (seasonal, interannual) changes in ecosystem of the open waters of the Black Sea. in Environmental degradation of the Black Sea: Challenges and Remedies, NATO Sci. Partnership Sub-ser., 2, vol. 56, edited by Besiktepe, S. et al., 109- 129pp, Kluwer Academic Publishers

Yilmaz, A., Yunev, O., A., Vedernikov, V., I., Moncheva, S., Bologa, A., S., Cociasu, A., Ediger, D. 1998. Unusual temporal variations in the spatial distribution of chlorophyll a in the Black Sea during 1990- 1996, In: Ivanov, L., Oguz , T., (eds), NATO TUBlackSea Project: ecosystem modeling as a management tool for the Black Sea, Vol I, Kluwer Academic Publishers, Dordrecht, pp; 105-120.

Yunev, O. A., Burlakova, Z. P., Krupatkina, D. K., Berseneva, G. P., Churilova T. Y. 1987. Seasonal variability of chlorophyll in the western Black Sea surface layer, In: URDENKO V., A., Zimmerman, G., (eds), Optical remote sensing of the sea and the influence "Intercosmos", Vol 2, Part 2., Institute of Cosmic Investigation of GDR Academy of Science. Moscow, Berlin, Sevastopol, pp: 181-197. Program of

Yunev, O. A. 1989. Spatial distribution of chlorophyll a and phaeophytin a in the western Black Sea in winter, Oceanologia, 29, pp, 480-485.
Turkish Journal of Fisheries and Aquatic Sciences-Cover
  • ISSN: 1303-2712
  • Başlangıç: 2015
  • Yayıncı: Su Ürünleri Merkez Araştırma Enstitüsü - Trabzon
Sayıdaki Diğer Makaleler

Distributions of Anionic Surfactantin Sea Water and Total Organic Carbon in Bottom-Surfacesediment along theTurkish Coast of the Black Sea

MÜRŞİDE SUR

Market Differences between Wild and Farmed Major European Marine Fish Species. Evidence from the Spanish Seafood Market

Gonzalo Rodríguez RODRIGUEZ, Roberto Bande RAMUDO

First Record of Ophelia bicornisSavigny in Lamarck, 1818 (Polychaeta: Opheliidae) from the Turkish Coast of the Black Sea (Sinop Peninsula) with EcologicalFeatures

Ertan DAĞLI, Güley ŞAHİN KURT, Murat Sezgin, Zeynep CENGİZ

Establishing Boundary Classes for the Quality Classification of Southeastern Black Sea Using Phytoplankton Biomass

DİLEK EDİGER, Çolpan Polat BEKEN, A. Muzaffer FEYZIOGLU, FATİH ŞAHİN, İbrahim TAN

First Report of Several Myxosporean (Myxozoa) and Monogenean Parasites from Fish Species off Sinop Coasts of the Black Sea

Ahmet ÖZER, Hakan ÖZKAN, Sevilay GÜNEYDAĞ, Violetta YURAKHNO

The Effect of Stress Due to Nitrogen Limitation on Lipid Content of Phaeodactylum Tricornutum (Bohlin) Cultured Outdoor in Photobioreactor

Burcu AK, OYA IŞIK, LEYLA USLU, Cansev AZGIN

Macroscopic and Microscopic Examination of Seasonal Gonad Change in Alburnus istanbulensis(Battalgil, 1941) (Teleostei:Cyprinidae)

Ezgi HAMZAOĞLU, MÜFİT ÖZULUĞ, Yasemin TUNALI, Melike ERKAN

Conjoined Twinning Incidences in Trachurus mediterraneus(Steindachner, 1868) Eggs in Southern Marmara Sea

SİNAN MAVRUK, AHSEN YÜKSEK, Alpaslan KAYA, Dursun AVŞAR

Effects of Dietary Lipid Increments on Growth Performance, Feed Utilization, Carcass Composition and Intraperitoneal Fat of Marble Goby,Oxyeleotris marmorata, Juveniles

Annita Seok YONG KIAN, Shing Yau OOIL, Rossita SHAPAWI, Amal Kumar BISWAS, Takii KENJI

Community Structure of a Molluscan Assemblage in an Anthropized Environment, Hammamet Marina, North-Eastern Tunisia

Refka ELGHARSALLİ, Lotfi RABAOUİ, Nejla ALOUI BEJAOUI