A 0.65 1.35 GHz synthesizable all-digital phase locked loop with quantization noise suppressing time-to-digital converter

A 0.65 1.35 GHz synthesizable all-digital phase locked loop with quantization noise suppressing time-to-digital converter

This paper presents a new quantization noise suppression method for a time-to-digital converter (TDC) and proposes an all-digital phase-locked loop (ADPLL) architecture using only standard cell logic gates. Using a new multiple input multiple output (MIMO) quantization noise suppression method provides an order of √ 2N improvement in TDC resolution with N parallel TDC channels. Suppressed noise in the TDC allows the ADPLL to achieve superior jitter performance in both theoretical calculations and simulation results. In order to allow fast portability between process nodes, short design cycle time, ease of modification, and flexibility, ADPLL architecture is designed completely in register transfer level intensive Verilog code and the implementation is synthesized in order to obtain final microelectronic design schematics. In comparison to similar work in the literature, postlayout simulation results show that the designed ADPLL achieves period jitter of 1.78 ps rms with a layout area of 0.09 mm2 in 65 nm CMOS process and power consumption of 17.5 mW at 800 MHz.

___

  • [1] Yang L, Wang S, Zhang X. Method and circuit for DisplayPort video clock recovery. In: US Patent 8,217,689; 10 July 2012; USA.
  • [2] Zhu N. Reducing Jitter in a Recovered Data Stream Clock of a Video DisplayPort Receiver. In: US Patent 13/012,986; 10 August 2011; USA.
  • [3] Staszewski RB, Waheed K, Vemulapalli S, Dulger F, Wallberg J. Spur-free ADPLL in 65 nm for mobile phones. In: IEEE International Solid-State Circuits Conference; 20–24 February 2011; San Francisco, CA, USA. New York, NY, USA: IEEE. pp. 52-54.
  • [4] Kim W, Park J, Park H. Layout synthesis and loop parameter optimization of a low-jitter all-digital pixel clock generator. J Solid St Circ 2014; 3: 657-672.
  • [5] Mandai S, Charbon E. A 128-channel, 9 ps column-parallel two-stage TDC based on time difference amplification for time-resolved imaging. IEEE T Nucl Sci 2012; 5: 2463-2470.
  • [6] Kim W, Park J, Kim J, Kim T, Park H, Jeong D. A 0.032 mm2 3.1 mW synthesized pixel clock generator with 30 ps rms integrated jitter and 10-to-630 MHz DCO tuning range. In: IEEE International Solid-State Circuits Conference; 17–21 February 2013; San Francisco, CA, USA. New York, NY, USA: IEEE. pp. 250-251.
  • [7] Musa A, Deng W, Siriburanon T, Miyahara M, Okada K, Matsuzawa A. Compact, low-power and low-jitter dualloop injection locked PLL using all-digital PVT calibration. J Solid St Circ 2013; 1: 50-60.
  • [8] Wu J, Wang Z, Chen C. A 2.4-GHz all-digital PLL with a 1-ps resolution 0.9-mW edge-interchanging-based stochastic TDC. IEEE T Circuits-II 2015; 10: 917-921.
  • [9] Vengattaramane K, Borremans J, Steyaert M, Craninckx J. A standard cell based all-digital TDC with reconfigurable resolution and on-line background calibration. In: European Solid-State Circuits Conference; 12–16 September 2011; Helsinki, Finland. New York, NY, USA: IEEE. pp. 275-278.
  • [10] Balcioglu Y, Dundar G. A synthesizable DCO with only standard cells: 810 to 1400 MHz digital back-end design flow compatible design with PVT calibration. In: International Symposium on Electronics and Telecommunications; 14–15 November 2014; Timisoara, Romania. New York, NY, USA: IEEE. pp. 1-4.
  • [11] Straayer MZ, Perrott MH. A multi-path gated ring oscillator TDC with first-order noise shaping. J Solid St Circ 2009; 4: 1089-1098.
  • [12] Ye Z, Kennedy MP. Reduced complexity MASH delta–sigma modulator. IEEE T Circuits-II 2007; 8: 725-729.
  • [13] Kim S, Hong S, Chang K, Ju H, Shin J, Kim B, Park H, Sim J. A 2 GHz synthesized fractional-N ADPLL with dual-referenced interpolating TDC. J Solid St Circ 2016; 2: 391-400.
  • [14] Grollitsch W, Nonis R, Dalt ND. A 1.4 psrms-period-jitter TDC-less fractional-N digital PLL with digitally controlled ring oscillator in 65nm CMOS. In: IEEE International Solid-State Circuits Conference; 7–11 February 2010; San Francisco, CA, USA. New York, NY, USA: IEEE. pp. 478-479.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK