High-pass/low-pass section design for 0◦ 360◦ lumped-element phase shifters via the real frequency technique

High-pass/low-pass section design for 0◦ 360◦ lumped-element phase shifters via the real frequency technique

: In this paper, an algorithm based on the real frequency technique (RFT) is proposed to design high-pass and low-pass sections of a 0 ◦360 ◦ wide range lumped-element phase shifter. The switching process, however, is not considered in this work. In the algorithm, it is enough to define the section type (high-pass or low-pass) and the number of elements in the sections; there is no need to select the exact circuit topologies for the high-pass and low-pass sections. This is a natural consequence of the proposed approach. Unlike in the methods described in the literature, there is also no need to derive element value expressions. Two examples are given to illustrate the utilization of the proposed algorithm. The proposed algorithm and results are verified by simulation.

___

  • [1] Stark L. Microwave theory of phased-array antennas-A review. P IEEE 1974; 12: 1661-1701.
  • [2] Allen JL. Array antennas: New applications for an old technique. IEEE Spectrum 1964; 1: 115-130.
  • [3] Johnson RC, Jasik H. Antenna Engineering Handbook. 2nd ed. New York, NY, USA: McGraw-Hill, 1984.
  • [4] Alonso JI, Blas JM, Garcia LE, Ramos J, Pablos J, Grajal J, Gentili GG, Gismero J, Perez F. Low cost electronically steered antenna and receiver system for mobile satellite communications. IEEE T Microw Theory 1996; 44: 2438- 2449.
  • [5] Edward BJ, Webb RS, Weinreb SA. W-band active phased-array antenna. Microwave J 1996; 254-262.
  • [6] Viverios D, Conconmi D, Jastrzebski AK. A Tunable all-pass MMIC active phase shifter. IEEE T Microw Theory 2002; 50: 1885-1889.
  • [7] Gupta RK, Estep GC, Upshur JI. MMIC techniques for active phased-array antenna systems for future communications satellites. In: Asia-Pacific Microwave Conference; 6–9 December 1994; Tokyo, Japan. pp. 897-902.
  • [8] Hirshfield E. The global system. Appl Microw 1996; 91-99.
  • [9] Johannsen KG. Mobile P-service satellite system comparison. Int J Satell Commun 1995; 13: 453-462.
  • [10] Kang DW, Lee H, Lee K. Design of a phase shifter with improved bandwidth using embedded series-shunt switches. In: European Microwave Conference; 4–6 October 2005; Paris, France. pp. 311-314.
  • [11] Onno P, Pitkins A. Miniature multi-kilowatt PIN diode MIC digital phase shifters. In: IEEE GMTT International Microwave Symposium Digest; 16–19 May 1971; Washington, DC, USA. New York, NY, USA: IEEE. pp. 22-23.
  • [12] Morton MA, Comeau JP, Cressler JD. Source of phase error and design considerations for silicon-based monolithic high-pass/low-pass microwave phase shifters. IEEE T Microw Theory 2006; 54: 4032-4040.
  • [13] Garver RV. Broad-band diode phase shifters. IEEE T Microw Theory T 1972; 20: 314-323.
  • [14] Kingsley N, Papapolymerou J. Organic wafer-scale packaged miniature 4-bit RF MEMS phase shifter. IEEE T Microw Theory 2006; 54: 1229-1236.
  • [15] Malczewski A. X-band RF MEMS phase shifters for phased array applications. IEEE Microw Wirel Co 1999; 9: 517-519.
  • [16] Hayden JS. Very low-loss distributed X-band and Ka-band MEMS phase shifters using metal-air-metal capacitors. IEEE T Microw Theory 2003; 51: 309-314.
  • [17] Hancock TM, Rebeiz GM. A 12-GHz SiGe phase shifter with integrated LNA. IEEE T Microw Theory 2005; 53: 977-983.
  • [18] Tayrani R, Teshiba MA, Sakamoto GM, Chaudhry Q, Alidio R, Yoosin K, Ahmad IS, Cisco TC, Hauhe M. Broadband SiGe MMICs for phased-array radar applications. IEEE J Solid-St Circ 2003; 38: 1462-1470.
  • [19] Morton MA, Comeau JP, Cressler JD, Mitchell M, Papapolymerau J. 5 bit silicon-based X-band phase shifter using a hybrid pi/t high-pass/low-pass topology. IET Microw Antenna P 2008; 2: 19-22.
  • [20] Tang X, Mouthaan K. Design considerations for octave-band phase shifters using discrete components. IEEE T Microw Theory 2010; 58: 3459-3466.
  • [21] Chen L, Bai Y, Xing X. Performance of high-/low-pass phase shifter in broadband. In: IEEE International Conference on Ultra-Wideband; 20–23 September 2010; Nanjing, China. New York, NY, USA: IEEE. pp. 1-4.
  • [22] Richards PI. Resistor-terminated-line circuits. Proc IRE 1948; 36: 217-220.
  • [23] Belevitch V. Classical Network Theory. San Francisco, CA, USA: Holden Day, 1968.
  • [24] Yarman BS. Novel circuit configurations to design loss balanced 0 ◦ –360 ◦ digital phase shifters. Int J Electron Commun 1991; 45: 96-104.
  • [25] Yarman BS. New approaches to design digital phase shifters over the complete phase plane. Medical Journal of the Islamic World Academy of Sciences 1991; 4: 14-25.
  • [26] Yarman BS. New circuit configurations for designing 0 ◦ –180 ◦ digital phase shifters. IEE P 1987; 134: 253-260.
  • [27] Adler A, Popovich R. Broadband switched-bit phase shifter using all-pass networks. In: IEEE MTT-S International Microwave Symposium Digest; 10–14 July 1991; Boston, MA, USA. New York, NY, USA: IEEE. pp. 265-268.
  • [28] Tang X, Mouthaan K. A broadband 180 ◦ phase shifter with a small phase error using lumped elements. In: Asia Pacific Microwave Conference APMC 2009; 7–10 December 2009; Singapore. pp. 1315-1318.