Training ANFIS by using the artificial bee colony algorithm

Training ANFIS by using the artificial bee colony algorithm

In this study, a new adaptive network-based fuzzy inference system (ANFIS) training algorithm, the artificial bee colony (ABC) algorithm, is presented. Antecedent and conclusion parameters existing in the structure of ANFIS are optimized with the ABC algorithm and ANFIS training is realized. Identification of a set of nonlinear dynamic systems is performed in order to analyze the suggested training algorithm. The ABC algorithm is operated 30 times for each identification case and the average root mean square error (RMSE) value is obtained. Training RMSE values calculated for the four examples considered are 0.0325, 0.0215, 0.0174, and 0.0294, respectively. In addition, test error values for the same cases are respectively computed as 0.0270, 0.0186, 0.0167, and 0.0435. The results obtained are compared with those of known neuro-fuzzy-based methods frequently used in the literature in identification studies of nonlinear systems. It is shown that ANFIS can be trained successfully by using the ABC algorithm for the identification of nonlinear systems.

___

  • [1] Jang JSR. ANFIS: Adaptive-network-based fuzzy inference system. IEEE T Syst Man Cyb 1993; 23: 665-685.
  • [2] Jang JSR, Sun CT, Mizutani E. Neuro fuzzy and soft computing a computational approach to learning and machine intelligence. IEEE T Automat Contr 1997; 42: 1482-1484.
  • [3] Ho WH, Chen JX, Lee I, Su HC. An ANFIS-based model for predicting adequacy of vancomycin regimen using improved genetic algorithm. Expert Syst Appl 2011; 38: 13050-13056.
  • [4] Nariman-Zadeh N, Darvizeh A, Dadfarmai MH. Design of ANFIS networks using hybrid genetic and SVD methods for the modeling of explosive cutting process. J Mater Process Tech 2004; 155: 1415-1421.
  • [5] Chen MY. A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering. Inform Sci 2013; 220: 180-195.
  • [6] Shoorehdeli MA, Teshnehlab M, Sedigh AK. Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter. Fuzzy Set Syst 2009; 160: 922-948.
  • [7] Shoorehdeli MA, Teshnehlab M, Sedigh AK, Khanesar MA. Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods. Appl Soft Comput 2009; 9: 833-850.
  • [8] Jalali-Heravi M, Asadollahi-Baboli M. Quantitative structure-activity relationship study of serotonin (5-HT7) receptor inhibitors using modified ant colony algorithm and adaptive neuro-fuzzy interference system (ANFIS). Eur J Med Chem 2009; 44: 1463-1470.
  • [9] Khazraee SM, Jahanmiri AH, Ghorayshi SA. Model reduction and optimization of reactive batch distillation based on the adaptive neuro-fuzzy inference system and differential evolution. Neural Comput Appl 2011; 20: 239-248.
  • [10] Priyadharsini SS, Rajan ES, Sheniha FS. A novel approach for the elimination of artefacts from EEG signals employing an improved artificial immune system algorithm. J Exp Theor Artif In 2016; 28: 239-259.
  • [11] Karaboga D, Kaya E. Training ANFIS using artificial bee colony algorithm. In: 2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications; 19–21 June 2013; Albena, Bulgaria. New York, NY, USA: IEEE. pp. 1-5.
  • [12] Karaboga D, Kaya E. Training ANFIS using artificial bee colony algorithm for nonlinear dynamic systems identification. In: IEEE 2014 Conference on Signal Processing and Communications Applications; 23–25 April 2014; Trabzon, Turkey. New York, NY, USA: IEEE. pp. 493-496.
  • [13] Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06. Kayseri, Turkey: Erciyes University, 2005.
  • [14] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 2007; 39: 459-471.
  • [15] Kockanat S, Karaboga N. The design approaches of two-dimensional digital filters based on metaheuristic optimization algorithms: a review of the literature. Artif Intell Rev 2015; 44: 265-287.
  • [16] Kockanat S, Karaboga N. A novel 2D-ABC adaptive filter algorithm: a comparative study. Digit Signal Process 2015; 40: 140-153.
  • [17] Akay B, Karaboga D. A survey on the applications of artificial bee colony in signal, image, and video processing. SIViP 2015; 9: 967-990.
  • [18] Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 2014; 42: 21-57.
  • [19] Li B, Li Y, Gong L. Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model. Eng Appl Artif Intel 2014; 27: 70-79.
  • [20] Juang CF, Lin YY, Tu CC. A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Set Syst 2010; 161: 2552-2568.
  • [21] Ning W, Yue T, Shao-Man L. A generalized online self-organizing fuzzy neural network for nonlinear dynamic system identification. In: Proceedings of the 30th Chinese Control Conference; 22–24 July 2011; Yantai, China. New York, NY, USA: IEEE. pp. 2879-2883.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Bayesian estimation of discrete-time cellular neural network coefficients

Habib ŞENOL, Atilla ÖZMEN, Hakan Metin ÖZER

Adaptive sliding mode with time delay control based on convolutions for power flow reference tracking using a VSC-HVDC system

Hachemi CHEKIREB, Amar HAMACHE, Mohand Outaher BENSIDHOUM

Design and implementation of a six-port junction based on substrate integrated waveguide

Gholamreza MORADI, Masoud JAFARI, Reza SHIRAZI SARRAF, Rashid MIRZAVAND

Comparative study of conventional modulation schemes in terms of conducted and radiated EMI generated by three-phase inverters

Mahmoud HAMOUDA, Mohamed SALEM, Jaleleddine SLAMA HADJ BEN

An efficient OFDM-based system with an insufficient cyclic prefix via a novel constellation algorithm

Saeed MAGHREBI GHAZI

Smart frequent itemsets mining algorithm based on FP-tree and DIFFset data structures

Tao JIANG, George GATUHA

Edge distance graph kernel and its application to small molecule classification

Mehmet TAN

Load shedding scheme based on frequency and voltage stability for an islanding operation of a distribution network connected to mini-hydro generation

Hasmaini MOHAMAD, Hazlie MOKHLIS, Norazliani SAPARI, Javed LAGHARI AHMED, Halim BAKAR ABU, Mohd Rohaimi DAHALAN MOHD

Rapidly converging solution for p-centers in nonconvex regions

Deepak GARG, Monika MANGLA

Investigation of adaptive control of robot manipulators with uncertain features for trajectory tracking employing HIL simulation technique

Senthil Kumar PERUMAL JAGATHEESA, Senthil Kumar NATARAJAN