Thermodynamic and kinetic study of adsorptive removal of lead by the nanocomposite loaded nanofibers

Thermodynamic and kinetic study of adsorptive removal of lead by the nanocomposite loaded nanofibers

Herein, the fabrication of electrospun nanocomposites, using polyacrylonitrile nanofibers (PNF) modified with nanobentonite and fly ash, is explained. Further, the use of electrospun adsorbent for the remediation of Pb (II) ions from water has been explored. Pristine PNF and nanocomposites were characterized using SEM, EDX, and FTIR to analyze surface topology, elemental composition, and functional groups, respectively. The adsorptive behavior of developed adsorbents was investigated using the effects of dosage, initial concentration, time, and temperature. Pseudo-second order kinetics fit well with experimental data and the adsorption followed intra-particle diffusion. The thermodynamics study confirmed spontaneous endothermic adsorption of the heavy metal. Nanocomposites-based adsorbents showed improved adsorption capacity for Pb (II) ions compared to pristine PNF.

___

  • 1. Zhu F, Zheng YM, Zhang BG, Dai YR. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. Journal of Hazardous Materials 2021; 401: 123608. doi: 10.1016/j.jhazmat.2020.123608
  • 2. Yahya MD, Obayomi KS, Abdulkadir MB, Iyaka YA, Olugbenga AG. Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium. Water Science and Engineering 2020; 13 (3): 202–213. doi: 10.1016/j.wse.2020.09.007
  • 3. Hoang MT, Pham TD, Nguyen VT, Nguyen MK, Pham TT et al. Removal and recovery of lead from wastewater using an integrated system of adsorption and crystallization. Journal of Cleaner Production 2019; 213: 1204–1216. doi: 10.1016/j.jclepro.2018.12.275
  • 4. Rashid J, Azam R, Kumar R, Ahmad M, Rehman A et al. Sulfonated polyether sulfone reinforced multiwall carbon nanotubes composite for the removal of lead in wastewater. Applied Nanoscience 2019; 9 (8): 1695–1705. doi: 10.1007/s13204-019-00953-2
  • 5. Chitpong N, Husson SM. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Separation and Purification Technology 2017; 179: 94–103. doi: 10.1016/j.seppur.2017.02.009
  • 6. Huang Z, Chen Q, Yao Y, Li X, Lu J et al. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering 2018; 26: 289-300. doi: 10.1016/j.jwpe.2018.11.003
  • 7. Tang X, Zheng H, Teng H, Sun Y, Guo J et al. Chemical coagulation process for the removal of heavy metals from water: a review. Desalination and Water Treatment 2016; 57 (4): 1733–1748. doi: 10.1080/19443994.2014.977959
  • 8. Hou T, Du H, Yang Z, Tian Z, Shen S et al. Flocculation of different types of combined contaminants of antibiotics and heavy metals by thermo-responsive flocculants with various architectures. Separation and Purification Technology 2019; 223: 123–132. doi: 10.1016/j. seppur.2019.04.068
  • 9. Sunil K, Karunakaran G, Yadav S, Padaki M, Zadorozhnyy V et al. Al-Ti2O6 a mixed metal oxide based composite membrane: A unique membrane for removal of heavy metals. Chemical Engineering Journal 2018; 353: 678–684. doi: 10.1016/j.cej.2018.05.017
  • 10. Ahmadijokani F, Mohammadkhani R, Ahmadipouya S, Shokrgozar A, Rezakazemi M et al. Superior chemical stability of UiO-66 metalorganic frameworks (MOFs) for selective dye adsorption. Chemical Engineering Journal 2020; 399: 125346. doi: 10.1016/j.cej.2020.125346
  • 11. El-Naggar ME, Radwan EK, El-Wakeel ST, Kafafy H, Gad-Allah TA et al. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal. International Journal of Biological Macromolecules 2018; 113: 248–258. doi: 10.1016/j.ijbiomac.2018.02.126
  • 12. Burakov AE, GaluninaIrin EV, Burakova IV, Kucherova AE, Agarwal S et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety 2017; 148: 702-712. doi: 10.1016/j.ecoenv.2017.11.034
  • 13. Jiang D, Yang Y, Huang C, Huang M, Chen J et al. Removal of the heavy metal ion nickel (II) via an adsorption method using flower globular magnesium hydroxide. Journal of Hazardous Materials 2019; 373: 131–140. doi: 10.1016/j.jhazmat.2019.01.096
  • 14. Chong WC, Choo YL, Koo CH, Pang YL, Lai SO. Adsorptive membranes for heavy metal removal - A mini review. In AIP Conference Proceedings 2157. AIP Publishing LLC; 2019. pp. 020005.
  • 15. Brandes R, Brouillette F, Chabot B. Phosphorylated cellulose/electrospun chitosan nanofibers media for removal of heavy metals from aqueous solutions. Journal of Applied Polymer Science 2020; 138 (11): 5002. doi: 10.1002/app.50021
  • 16. Lai KC, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Gan S. Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater. Bioresource Technology 2020; 309: 123296. doi: 10.1016/j. biortech.2020.123296
  • 17. Gebru KA, Das C. Removal of Pb (II) and Cu (II) ions from wastewater using composite electrospun cellulose acetate/titanium oxide (TiO2) adsorbent. Journal of Water Process Engineering 2017; 16: 1–13. doi: 10.1016/J.JWPE.2016.11.008
  • 18. Li Y, Zhao R, Chao S, Sun B, Wang C, Li X. Polydopamine coating assisted synthesis of MnO2 loaded inorganic/organic composite electrospun fiber adsorbent for efficient removal of $Pb^{2+}$ from water. Chemical Engineering Journal 2018; 344: 277–289. doi: 10.1016/J. CEJ.2018.03.044
  • 19. Quinn JA, Yang Y, Buffington AN, Romero FN, Green MD. Preparation and characterization of crosslinked electrospun poly(vinyl alcohol) nanofibrous membranes. Polymer 2018; 134: 275–281. doi: 10.1016/j.polymer.2017.11.023
  • 20. Zhu Z, Wu P, Liu G, He X, Qi B et al. Ultrahigh adsorption capacity of anionic dyes with sharp selectivity through the cationic charged hybrid nanofibrous membranes. Chemical Engineering Journal 2017; 313: 957–966. doi: 10.1016/j.cej.2016.10.145
  • 21. Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P et al. Covalent organic frameworks for membrane separation. Chemical Society Reviews 2019; 48 (10): 2665–2681. doi: 10.1039/c8cs00919h
  • 22. Abdel-Karim A, El-Naggar ME, Radwan EK, Mohamed IM, Azaam M et al. High-performance mixed-matrix membranes enabled by organically/inorganic modified montmorillonite for the treatment of hazardous textile wastewater. Chemical Engineering Journal 2021; 405: 126964. doi: 10.1016/j.cej.2020.126964
  • 23. Irandoost M, Pezeshki-Modaress M, Javanbakht V. Removal of lead from aqueous solution with nanofibrous nanocomposite of polycaprolactone adsorbent modified by nanoclay and nanozeolite. Journal of Water Process Engineering 2019; 32: 100981. doi: 10.1016/j. jwpe.2019.100981
  • 24. Thamer BM, Aldalbahi A, Moydeen M, Al-Enizi AM, El-Hamshary H et al. Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Scientific Reports 2019; 9 (1): 1–15. doi: 10.1038/s41598-019-55679-6
  • 25. Bode-Aluko CA, Pereao O, Ndayambaje G, Petrik L. Adsorption of toxic metals on modified polyacrylonitrile nanofibres: A Review. Water, Air & Soil Pollution 2017; 228 (1): 1–11. doi: 10.1007/s11270-016-3222-3
  • 26. Bansal P, Purwar R. Polyacrylonitrile/clay nanofibrous nanocomposites for efficient adsorption of Cr (VI) ions. Journal of Polymer Research 2021; 28 (1): 3. doi: 10.1007/s10965-020-02362-4
  • 27. Mohammadi SZ, Darijani Z, Karimi MA. The synthesis of magnetic activated carbon/cobalt nanocomposite for fast removal of Cr(VI) from wastewater: kinetics, thermodynamics, and adsorption equilibrium studies. Russian Journal of Physical Chemistry A 2021; 95 (S1): S33–S43. doi: 10.1134/s0036024421140144
  • 28. Cui L, Wang Y, Gao L, Hu L, Yan L et al. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chemical Engineering Journal 2015; 281: 1–10. doi: 10.1016/j.cej.2015.06.043
  • 29. Anastopoulos I, Kyzas GZ. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? Journal of Molecular Liquids 2016; 218: 174–185. doi: 10.1016/j.molliq.2016.02.059
  • 30. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján LC, Anastopoulos I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids 2019; 273: 425–434. doi: 10.1016/j.molliq.2018.10.048
  • 31. Sen Gupta S, Bhattacharyya KG. Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science 2011; 162 (1–2): 39–58. doi: 10.1016/j.cis.2010.12.004
  • 32. Awad AM, Shaikh SMR, Jalab R, Gulied MH, Nasser MS et al. Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Separation and Purification Technology, vol. 228. Elsevier B.V., Dec. 01, 2019, doi: 10.1016/j.seppur.2019.115719
  • 33. Wang J, Guo X. Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials 2020; 390: 122156. doi: 10.1016/j.jhazmat.2020.122156
  • 34. Chen S, Qin C, Wang T, Chen F, Li X et al. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetics, thermodynamics and mechanism. Journal of Molecular Liquids 2019; 285: 62–74. doi: 10.1016/j. molliq.2019.04.035
  • 35. He Y, Zhang L, An X, Wan G, Zhu W et al. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism. Science Total Environment 2019; 688: 184–198. doi: 10.1016/j.scitotenv.2019.06.175
  • 36. Chen L, Zuo L, Jiang Z, Jiang S, Liu K et al. Mechanisms of shale gas adsorption: Evidence from thermodynamics and kinetics study of methane adsorption on shale. Chemical Engineering Journal 2019; 361: 559–570. doi: 10.1016/j.cej.2018.11.185
  • 37. Sigwadi R, Dhlamini MS, Mokrani T, Nemavhola F. Structural morphology and electronic conductivity of blended Nafion®- polyacrylonitrile/zirconium phosphate nanofibres. International Journal of Mechanical and Materials Engineering 2019; 14 (1): 1–10. doi: 10.1186/S40712-019-0098-1
  • 38. Mohamed A, Yousef S, Abdelnaby MA, Osman TA, Hamawandi B et al. Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers. Separation and Purification Technology 2017; 182: 219-223. doi: 10.1016/j. seppur.2017.03.051
  • 39. Aqeel SM, Huang Z, Walton J, Baker C, Falkner D et al. Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Advanced Composites and Hybrid Materials 2018; 1 (1): 185–192. doi: 10.1007/ s42114-017-0002-5
  • 40. Karbownik I, Rac-Rumijowska O, Fiedot-Toboła M, Rybicki T, Teterycz H. The preparation and characterization of polyacrylonitrilepolyaniline (PAN/PANI) fibers. Materials 2019; 12 (4): 664. doi: 10.3390/ma12040664
  • 41. Karacan I, Erdogan G. The influence of thermal stabilization stage on the molecular structure of polyacrylonitrile fibers prior to the carbonization stage. Fibers and Polymer 2012; 13 (3): 295–302. doi: 10.1007/S12221-012-0295-5
  • 42. Zhang SF, Zhao DY, Hou C. Strengthening of polyacrylonitrile (PAN) fiber networks with polyamide epichlorohydrin (PAE) resin. Polymer Bulletin 2018; 75 (12): 5373–5386. doi: 10.1007/s00289-018-2334-x
  • 43. Youssef AM, Al-Awadhi MM, Akl MA. Solid phase extraction and spectrophotometric determination of methylene blue in environmental samples using bentonite and acid activated bentonite from Egypt. Journal of Analytical & Bioanalytical Techniques 2014; 5 (1): 1–8. doi: 10.4172/2155-9872.1000179
  • 44. Madejová J. FTIR techniques in clay mineral studies. Vibrational Spectroscopy 2003; 31 (1): 1–10. doi: 10.1016/S0924-2031(02)00065-6
  • 45. Chaúque EFC, Dlamini LN, Adelodun AA, Greyling CJ, Ngila JC. Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes. Physics and Chemistry of the Earth, Parts A/B/C 2017; 100: 201–211. doi: 10.1016/J.PCE.2016.10.008
  • 46. Efome JE, Rana D, Matsuura T, Lan CQ. Metal-organic frameworks supported on nanofibers to remove heavy metals. Journal of Materials Chemistry A 2018; 6 (10): 4550–4555. doi: 10.1039/C7TA10428F
  • 47. Nur-E-Alam M, Abu Sayid Mia M, Ahmad F, Mafizur Rahman M. Adsorption of chromium (Cr) from tannery wastewater using low-cost spent tea leaves adsorbent. Applied Water Science 2018; 8 (5): 129. doi: 10.1007/s13201-018-0774-y
  • 48. Raghav S, Kumar D. Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. Journal of Chemical Engineering Data 2018; 63 (5): 1682–1697. doi: 10.1021/acs.jced.8b00024
  • 49. Foroutan R, Oujifard A, Papari F, Esmaeili H. Calcined Umbonium vestiarium snail shell as an efficient adsorbent for treatment of wastewater containing Co (II). Biotech. 2019; 9 (3): 78. 123AD, doi: 10.1007/s13205-019-1575-1
  • 50. Tohdee K, Kaewsichan L, Asadullah. Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. Journal of Environmental Chemical Engineering 2018; 6 (2): 2821–2828. doi: 10.1016/j.jece.2018.04.030 MAHMOOD et al. / Turk J Chem 355
  • 51. Shahzad A, Miran W, Rasol K, Nawaz M, Jang J et al. Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Advances 2017; 7 (16): 9764–9771. doi: 10.1039/c6ra28406j
  • 52. Chen Q, Zheng J, Wen L, Yang C, Zhang L. A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere 2019; 224: 509–518. doi: 10.1016/j.chemosphere.2019.02.138
  • 53. Niu M, Li G, Cao L, Wang X, Wang W. Preparation of sulphate aluminate cement amended bentonite and its use in heavy metal adsorption. Journal of Cleaner Production 2020; 256: doi: 10.1016/j.jclepro.2020.120700
  • 54. Hosseini J, Zare EN, Ajloo D. Experimental and theoretical calculation investigation on effective adsorption of lead(II) onto poly(anilineco-pyrrole) nanospheres. Journal of Molecular Liquids 2019; 296: 111789. doi: 10.1016/j.molliq.2019.111789
  • 55. Zambrano-Intriago LA, Gorozabel-Mendoza ML, Córdova Mosquera A, Delgado-Demera MH, Duarte MMMB et al. Kinetics, equilibrium, and thermodynamics of the blue 19 dye adsorption process using residual biomass attained from rice cultivation. Biomass Conversion and Biorefinery 2020; 1–13. doi: 10.1007/s13399-020-00944-2
  • 56. Wang S, Ning H, NingHu, Huang K, Weng S et al. Preparation and characterization of graphene oxide/silk fibroin hybrid aerogel for dye and heavy metal adsorption. Composites Part B Engineering 2019; 163: 716–722. doi: 10.1016/j.compositesb.2018.12.140
  • 57. Ahmed SM, Taha MR, Taha OME et al. Kinetics and isotherms of dichlorodiphenyltrichloroethane (DDT) adsorption using soil–zeolite mixture. Nanotechnology for Environmental Engineering 2018; 3 (1): 4. doi: 10.1007/s41204-017-0033-8
  • 58. Zou C, Jiang W, Liang J, Sun X, Guan Y. Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite. Environmental Science and Pollution Research 2019; 26 (2): 1315–1322. doi: 10.1007/s11356-018-3652-0
  • 59. Huang X, Zhao H, Hu X, Liu F, Wang L et al. Optimization of preparation technology for modified coal fly ash and its adsorption properties for $Cd^{2+}$. Journal of Hazardous Materials 2020; 392: 122461. doi: 10.1016/j.jhazmat.2020.122461
  • 60. Ji C, Wu D, Lu J, Shan C, Ren Y et al. Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons. Water Research 2021; 189: 116599. doi: 10.1016/j.watres.2020.116599
  • 61. Jiang C, Wang X, Wang G, Hao C, Li X et al. Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions. Composites Part B Engineering 2019; 169: 45–54. doi: 10.1016/j.compositesb.2019.03.082
  • 62. Betiha MA, Moustafa YM, Mansour AS, Rafik E, El-Shahat MF. Nontoxic polyvinylpyrrolidone-propylmethacrylate-silica nanocomposite for efficient adsorption of lead, copper, and nickel cations from contaminated wastewater. Journal of Molecular Liquids 2020; 314: 113656. doi: 10.1016/j.molliq.2020.113656
  • 63. Manyangadze M, Chikuruwo NMH, Narsaiah B, Chakra CS, Charis G et al. Adsorption of lead ions from wastewater using nano silica spheres synthesized on calcium carbonate templates, Heliyon 2020; 6 (11): e05309. doi: 10.1016/j.heliyon.2020.e05309
  • 64. Chowdhury S, Mishra R, Saha P, Kushwaha P. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 2011; 265 (1–3): 159–168. doi: 10.1016/j.desal.2010.07.047
  • 65. Karmacharya MS, Gupta VK, Tyagi I, Agarwal S, Jha VK. Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. Journal of Molecular Liquids 2016; 216: 836–844. doi: 10.1016/j.molliq.2016.02.025
  • 66. Agarwal S, Rani A. Adsorption of resorcinol from aqueous solution onto CTAB/NaOH/flyash composites: Equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering 2017; 5 (1): 526–538. doi: 10.1016/j.jece.2016.11.035
  • 67. Bai C, Wang L, Zhu Z. Adsorption of Cr(III) and Pb(II) by graphene oxide/alginate hydrogel membrane: Characterization, adsorption kinetics, isotherm and thermodynamics studies. International Journal of Biological Macromolecules 2020; 147: 898–910. doi: 10.1016/j. ijbiomac.2019.09.249
  • 68. Igberase E, Ofomaja A, Osifo PO. Enhanced heavy metal ions adsorption by 4-aminobenzoic acid grafted on chitosan/epichlorohydrin composite: Kinetics, isotherms, thermodynamics and desorption studies. International Journal of Biological Macromolecules 2019; 123: 664–676. doi: 10.1016/j.ijbiomac.2018.11.082
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A BODIPY based probe for the reversible “turn on” detection of Au(III) ions

Muhammed ÜÇÜNCÜ

Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts

Aslı YÜKSEL, Ceren ORAK, Aycan SAPMAZ

Thermodynamic and kinetic study of adsorptive removal of lead by the nanocomposite loaded nanofibers

Bilal QADIR, Urwa MAHMOOD, Sharjeel ABID, Ahsan NAZIR, Tanveer HUSSAIN

Schiff base functionalized silica gel for simultaneous separation and preconcentration of Cu(II), Ni(II), and Cd(II) in pharmaceuticals and water samples

Sema BAĞDAT, Feyzullah TOKAY

Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors

Ali ARAZ

Fluorometric determination of ornidazole by using BSA coated copper nanoclusters as a novel turn off sensor

Mehmetcan BİLKAY, Hayriye Eda ŞATANA KARA

Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate

Sena ÇAĞATAY ÖZPINAR, Ali DOĞRU, Tuğba ONGUN SEVİNDİK, Ayşegül TEKBABA, Hatice TUNCA, Armağan GÜNSEL, Ahmet T. BİLGİÇLİ, M. Nilüfer YARAŞIR

Preconcentration of trace amount Cu(II) by solid-phase extraction method using activated carbon-based ion-imprinted sorbent

Rukiye SAYGILI CANLIDİNÇ, Kübra TURAN, Orhan Murat KALFA

A simple and rapid RP-HPLC method for the assessment of cobalamin (vitamin B12) in tilapia and snoek fishes

Labaran IBRAHIM, Aminu USMAN

The investigation of fluorescence and metal interaction properties of racemic 7,8,9,10-tetrahydro-3-hydroxy-4-(1-hydroxyethyl)benzo[c]chromen-6-one

Hayrettin Ozan GÜLCAN, Açelya MAVİDENİZ, Karar Tawfeeq SHUKUR, Okan SİRKECİOĞLU, Mustafa GAZİ