Cerium and europium doped TiO2 thin films deposited by a sol-gel dip-coating process: characterization and photocatalytic activity toward dye degradation

Cerium and europium doped TiO2 thin films deposited by a sol-gel dip-coating process: characterization and photocatalytic activity toward dye degradation

Cerium (Ce) and europium (Eu)-doped $TiO_2$ thin films were obtained by sol-gel dip-coating technique. SEM micrographs showed that the surfaces are covered by agglomerated particles due to the repeating coating process. XRD patterns showed the presence of $TiO_2$ anatase phase. Raman spectra revealed that the peaks recorded at $146 cm^{−1}(Eg )$ and 397 $cm^{−1}(B_{1g})$ were related to the anatase phase. EIS measurements proved that $Ce-TiO_2$ (1wt%) and $Eu-TiO_2$ (0.1wt%) photocatalysts possessed a lower electron transfer resistance than pure $TiO_2$ , which can lead to effective separation of electron/ hole pairs during the photoreactions. The photoactivity of Ce and Eu-doped TiO2 was investigated by the degradation of amido black10B dye (AB) under UV excitation and varying the initial pH and concentrations. It was found that $Eu-TiO_2$ (0.1wt%) exhibited higher photocatalytic activity, reaching a first-order reaction rate of $k_{app} $$(0.036min^{-1}), t_{1/2}$ was around 12 min and AB removal was 98.94%, under optimal pH of 3.5 and AB concentration of 10ppm compared to $(t_{1/2}= 45 min, t_{1/2}=30 min)$, $(k_{app}= 0.022 min^{-1}, k_{app}=0.026min^{-1})$ and AB removal (94.78%, 96.44%), respectively for pure $TiO_2$ and $Ce-TiO_2$ (1wt%). Further increase in Eu/Ce amount up to optimal concentration (1wt% Ce and 0.1wt% Eu) led to a decrease in the AB removal. The mineralization of AB using Eu-$TiO_2$photocatalyst was confirmed by HPLC analysis.

___

  • 1. Li Y, Liu F, Li M, Wang X, Qi X et al. Synergetic effect between adsorption and photodegradation on $rGO/TiO_2$ /ACF composites for dynamic toluene gaseous removal. Environmental Science and Pollution Research 2020; 27: 9866-9881. doi: 10.1007/s11356-019-07565-x
  • 2. Nakata K, Fujishima A. $TiO_2$ photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C 2012; 13: 169-189. doi: 10.1016/j.jphotochemrev.2012.06.001
  • 3. Chong MN, Jin B, Chow CWK, Saint C. Recent developments in photocatalytic water treatment technology: A review. Water Research 2010; 44: 2997-3027. doi: 10.1016/j.watres.2010.02.039
  • 4. McCullagh C, Skillen N, Adams M, Robertson PKJ. Photocatalytic reactors for environmental remediation: A review. Journal of Chemical Technologie and Biotechnology 2011; 86: 1002-1017. doi: 10.1002/jctb.2650
  • 5. Kitazawa S, Yamamoto S, Asano M, Saitoh Y, Ishiyama S. Radiation-induced luminescence from$TiO_2$ by 10, 20 and 30 keV oxygen ion irradiations. Nuclear Instrument and Methods in Physics Research section B: Beam interactions with materials and atoms 2007; 256: 233- 237. doi: 10.1016/j.nimb.2006.12.008
  • 6. Ghosh S, Das AP. Modified titanium oxide $(TiO_2 )$ nanocomposites and its array of applications: a review. Toxicoogical and Environmental Chemistry 2015; 97: 491-514. doi: 10.1080/02772248.2015.1052204
  • 7. Choudhury B, Dey M, Choudhury A. Defect generation, d - d transition and band gap reduction in Cu-doped $TiO_2$ nanoparticles. International Nano Letters 2013; 2-9.
  • 8. Kong J, Wang Y, Sun Q, Meng D. Synthesis and photocatalytic properties of Ce-Doped $TiO_2$ nanotube arrays via anodic oxidation. Journal of Electron Materials 2017; 46: 4791-4797. doi: 10.1007/s11664-017-5418-8
  • 9. Fan X, Wan J, Liu E, Sun L, Hu Y, Li H et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by Ag deposited and Ce doped $TiO_2$ nanotube arrays. Ceramics International 2015; 41: 5107-5116. doi: 10.1016/j.ceramint.2014.12.083
  • 10. Priyanka KP, Anu Tresa S, Jaseentha OP, Varghese T. Cerium doped nanotitania-extended spectral response for enhanced photocatalysis. Materials Research Express 2014; 1. doi: 10.1088/2053-1591/1/1/015003
  • 11. Khade GV, Gavade NL, Suwarnkar MB, Dhanavade MJ, Sonawane KD et al. Enhanced photocatalytic activity of europium doped 2 under sunlight for the degradation of methyl orange. Journal of Materials Science: Materials in Electronics 2017; 28: 1-10. doi: 10.1007/s10854- 017-6883-9
  • 12. Kityakarn S, Pooarporn Y, Songsiriritthigul P, Worayingyong A, Robl S et al. (Photo)Electrochemical characterization of nanoporous $TiO_2$ and Ce-doped $TiO_2$ sol-gel film electrodes. Electrochimica Acta 2012; 83:113-124. doi: 10.1016/j.electacta.2012.07.129
  • 13. Kumar M, Gupta AK, Kumar D. Mg-doped $TiO_2$ thin films deposited by low-cost technique for CO gas monitoring, Ceramics International 2016; 42: 405-410. doi: 10.1016/j.ceramint.2015.08.124
  • 14. Manole AV, Dobromir M, Gîrtan M, Mallet R, Rusu G et al. Optical properties of Nb-doped $TiO_2$ thin films prepared by sol-gel method. Ceramics International 2013; 39: 4771-4776. doi: 10.1016/j.ceramint.2012.11.066
  • 15. Lu L, Xia X, Luo JK, Shao G. Mn-doped $TiO_2$ thin films with significantly improved optical and electrical properties. Journal of Physics: Applied Physics 2012; 45. doi: 10.1088/0022-3727/45/48/485102
  • 16. Wang J, Huang L. Optical properties of Fe-doped $TiO_2$ thin film prepared by Sol-gel. Applied Mechanics and Materials 2013; 395-396: 20-23. doi: 10.4028/www.scientific.net/AMM.395-396.20
  • 17. Boutlala A, Bourfaa F, Mahtili M, Bouaballou A. Deposition of Co-doped $TiO_2$ Thin Films by sol-gel method. IOP Conference Series: Materials Science and Engineering 2016; 108: 2-7. doi: 10.1088/1757-899X/108/1/012048
  • 18. Mondal S, Ghosh A, Piton MR, Gomes JP, Felix JF et al. A Investigation of optical and electrical properties of erbium-doped $TiO_2$ thin films for photodetector applications. Journal of Materials Science: Materials in Electronics 2018; 29: 19588-19600. doi: 10.1007/s10854- 018-0090-1
  • 19. Lourduraj S, Williams RV. Effect of iron doping on structural and optical properties of $TiO_2$ thin film by sol–gel routed spin coating technique. Journal of Advanced Dielectrics 2016; 7: 2-6. doi: 10.1142/S2010135X17500242
  • 20. Dijkstra MFJ, Michorius A, Buwalda H, Panneman HJ, Winkelman JGM et al. Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation. Catalysis Today 2001; 66: 487-494. doi: 10.1016/S0920-5861(01)00257-7
  • 21. Sordo C, Van Grieken R, Marugán J, Fernández-Ibáñez P. Solar photocatalytic disinfection with immobilised $TiO_2$ at pilot-plant scale. Water Science and Technology 2010; 61: 507-512. doi: 10.2166/wst.2010.876
  • 22. Manassero A, Satuf ML, Alfano OM. Photocatalytic reactors with suspended and immobilized $TiO_2$ : Comparative efficiency evaluation. Chemical Engineering Journal 2017; 326: 29-36. doi: 10.1016/j.cej.2017.05.087
  • 23. Zhao CX, Huang Y, Wang JQ, Niu CY, Jia Y. Prediction of a new direct-gap silicon phase: T36 silicon. Physics Letters A 2019; 383: 125903. doi: 10.1016/j.physleta.2019.125903
  • 24. Kuo TJ, Lin CN, Kuo CL, Huang MH. Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts. Chemistry of Materials 2007; 19: 5143-5147. doi: 10.1021/cm071568a
  • 25. Zhang Y, Mandal R, Ratchford DC, Anthony R, Yeom J. Si nanocrystals/ZnO nanowires hybrid structures as immobilized photocatalysts for photodegradation. Nanomaterials 2020; 10: 1-16. doi: 10.3390/nano10030491
  • 26. Hoa NT, Van Cuong V, Lam ND. Mechanism of the photocatalytic activity of p-Si(100)/n-ZnO nanorods heterojunction. Materials Chemistry and Physics 2018; 204: 397-402. doi: 10.1016/j.matchemphys.2017.10.070
  • 27. Ruzgar S. The Optoelectrical properties of Li: $TiO_2$ /p-Si photodiodes for various Li doping. Phys Status Solidi A 2020; 217: 1-11. doi: 10.1002/pssa.202000481
  • 28. Zhou X, Xue Q, Chen H, Liu C. Currentvoltage characteristics and ethanol gas sensing properties of ZnO thin film/Si heterojunction at room temperature. Physica E: Low Dimensional Systems and Nanostructures 2010; 42: 2021-2025. doi: 10.1016/j.physe.2010.03.008
  • 29. Bessergenev VG, Khmelinskii I V, Pereira RJF, Krisuk VV, Turgambaeva AE et al. Preparation of $TiO_2$ films by CVD method and its electrical, structural and optical properties. Vacuum 2002; 64: 275-279. doi: 10.1016/S0042-207X(01)00318-9
  • 30. Alotaibi AM, Sathasivam S, Williamson BAD, Kafizas A, Sotelo-Vazquez C et al. Chemical vapor deposition of photocatalytically active pure brookite $TiO_2$ . Thin Films Chemistry of Materials 2018; 30: 1353-1361. doi: 10.1021/acs.chemmater.7b04944
  • 31. Hussin R, Choy KL, Hou X. Deposited $TiO_2$ thin films by atomic layer deposition (ALD) for optical properties. Journal of Engineering and Applied Sciences 2016; 11: 7529-7533.
  • 32. Vilhunen SH, Sillanpää MET. Atomic layer deposited (ALD) $TiO_2$ and TiO2 -x-N x thin film photocatalysts in salicylic acid decomposition. Water Science and Technology 2009; 60: 2471-2475. doi: 10.2166/wst.2009.660
  • 33. Iancu AT, Logar M, Park J, Prinz FB. Atomic layer deposition of undoped$TiO_2$ exhibiting p -type conductivity, ACS Applied Materials and Interfaces 2015; 7: 5134-5140. doi: 10.1021/am5072223
  • 34. Atyaoui A, Cachet H, Sutter EMM, Bousselmi L. Effect of the anodization voltage on the dimensions and photoactivity of titania nanotubes arrays. Surface and Interface Analysis 2013; 45: 1751-1759. doi: 10.1002/sia.5317
  • 35. Touam T, Atoui M, Hadjoub I, Chelouche A, Boudine B et al. Effects of dip-coating speed and annealing temperature on structural, morphological and optical properties of sol-gel nano-structured $TiO_2$ thin films. The European Ohysical Journal Applied Physics 2014; 67: 1-7. doi: 10.1051/epjap/2014140228
  • 36. Elfanaoui A, Elhamri E, Boulkaddat L, Ihlal A, Bouabid K et al. X. Optical and structural properties of $TiO_2$ thin films prepared by sol e gel spin coating. International Journal of Hydrogen Energy 2010; 36: 4130-4133. doi: 10.1016/j.ijhydene.2010.07.057
  • 37. Kumar A, Singh R, Bahuguna G. Thin Film coating through sol-gel technique thin film coating through sol-gel technique. Research Journal of Chemical Sciences 2016.
  • 38. Panthi D, Tsutsumi A. A novel multistep dip-coating method for the fabrication of anode-supported microtubular solid oxide fuel cells. Journal of Solid State Electrochemistry 2014; 18: 1899-1905. doi: 10.1007/s10008-014-2429-8
  • 39. Rivero PJ, Garcia JA, Quintana I, Rodriguez R. Design of nanostructured functional coatings by using wet-chemistry methods. Coatings 2018; 8. doi: 10.3390/coatings8020076
  • 40. Abdeen DH, El Hachach M, Koc M, Atieh MA. A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials 2019; 12. doi: 10.3390/ma12020210
  • 41. Pant B, Park M, Park SJ. Recent advances in $TiO_2$ films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities. Coatings 2019; 9. doi: 10.3390/coatings9100613
  • 42. Francesca S, Teresa FM, Teresa P, Nicolas G. Mesoporous $TiO_2$ Thin Films: State of the Art Chapter. In: Intech, 1989, pp. 137-144.
  • 43. Chaki SH, Mahato KS, Malek TJ, Deshpande MP. CuAlS2 thin films – Dip coating deposition and characterization. Journal of Science: Advanced Materials and Devices 2017; 2: 215-224. doi: 10.1016/j.jsamd.2017.04.002
  • 44. Mohallem NDS, Viana MM, de Jesus MAML, de Magalhães Gomes GH, de Sousa Lima LF et al. Pure and Nanocomposite Thin Films Based on $TiO_2$ Prepared by Sol-Gel Process: Characterization and Applications. In: Titanium Dioxide-Material for a Sustainable Environment. Intech, 2018.
  • 45. Hernandez JV. Structural and Morphological modification of $TiO_2$ doped metal ions and investigation of photo-induced charge transfer processes 2017 (Doctoral dissertation, Université du Maine; Instituto politécnico nacional (México)).
  • 46. Oluwabi AT, Juma AO, Oja I, Mere A, Krunks M. Effect of Zr doping on the structural and electrical properties of spray deposited $TiO_2$ thin films. Journal of Materials Science 2018; 147-157.
  • 47. Sadikin SN, Rahman MYA, Umar AA, Salleh MM. Effect of spin-coating cycle on the properties of $TiO_2$ thin film and performance of DSSC. International Journal of Electrochemical Science 2017; 12: 5538. doi: 10.20964/2017.06.57
  • 48. Al-Taweel SS, Saud HR. New route for synthesis of pure anatase $TiO_2$ nanoparticles via utrasound-assisted sol-gel method. Journal of Chemical and Pharmaceutical Research 2016; 8 (2): 620-626.
  • 49. Amirtharajan S, Jeyaprakash P, Natarajan J. Electrical investigation of $TiO_2$ thin films coated on glass and silicon substrates-effect of UV and visible light illumination. Applied Nanoscience 2016; 6: 591-598. doi: 10.1007/s13204-015-0464-0
  • 50. He J, Du Y, Bai Y, An J, Cai X et al. Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019; 1-14.
  • 51. Wiatrowski A, Mazur M, Obstarczyk A, Wojcieszak D, Kaczmarek D et al. Comparison of the physicochemical properties of $TiO_2$ thin films obtained by magnetron sputtering with continuous and pulsed gas flow. Coatings 2018. doi: 10.3390/coatings8110412
  • 52. Choudhury B, Borah B, Choudhury A. Extending photocatalytic activity of $TiO_2$ nanoparticles to visible region of illumination by doping of cerium. Photochemistry and Photobiology 2012; 257-264. doi: 10.1111/j.1751-1097.2011.01064.x
  • 53. Li S, Wang Q, Chen T, Zhou Z, Wang Y et al. Study on cerium-doped nano-TiO2 coatings for corrosion protection of 316 L stainless steel. Nanoscale Research Letters 2012; 1-9.
  • 54. Ohsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase, $TiO_2$ . Nanoscale Research Letters 1978; 7: 321-324.
  • 55. Chanda A. Structural and magnetic study of undoped and cobalt doped $TiO_2$ nanoparticles. RSC Advances 2018; 8: 10939-10947. doi: 10.1039/C8RA00626A
  • 56. Szkoda M, Lisowska-oleksiak A, Siuzdak K. Optimization of boron-doping process of titania nanotubes via electrochemical method toward enhanced photoactivity. Journal of Solid State Electrochemisty 2016; 1765-1774. doi: 10.1007/s10008-016-3185-8
  • 57. Pal M, Pal U, Miguel J, Jiménez GY, Pérez-rodríguez F. Effects of crystallization and dopant concentration on the emission behavior of TiO2 : Eu nanophosphors. Nanoscale Research Letters 2012;7: 1. doi: 10.1186/1556-276X-7-1
  • 58. Pu P, Cachet H, Ngaboyamahina E, Sutter EMM. Relation between morphology and conductivity in $TiO_2$ nanotube arrays: An electrochemical impedance spectrometric investigation. Journal of Solid State Electrochemistry 2013; 17: 817-828. doi: 10.1007/s10008- 012-1931-0
  • 59. Pu P, Cachet H, Sutter EMM. Electrochemical impedance spectroscopy to study photo-induced effects on self-organized $TiO_2$ nanotube arrays. Electrochimica Acta 2010, 55: 5938-5946. doi: 10.1016/j.electacta.2010.05.048
  • 60. Kawde A, Annamalai A, Amidani L, Boniolo M, Kwong WL et al. Sustainable Energy & Fuels Photo-electrochemical hydrogen production from neutral phosphate buffer and seawater using functionalized by solution-based methods. The Royal Society of Chemistry 2018. doi: 10.1039/c8se00291f
  • 61. Govindan. K, Raja M, Maheshwari SU, Noel M. Analysis and understanding of amido black 10B dye degradation in aqueous solution by electrocoagulation with the conventional oxidants peroxomonosulfate, peroxodisulfate and hydrogen peroxide. Environmental Science: Water Research and Technology 2014. doi: 10.1039/C4EW00030G
  • 62. Amala J, Joice I, Sivakumar T, Ramakrishnan R, Ramya G, Pillai K et al. Visible active metal decorated titania catalysts for the photocatalytic degradation of Amidoblack-10B. Chemical Engineering Journal 2012; 210: 385-397. doi: 10.1016/j.cej.2012.08.103
  • 63. Kashyap J, Ashraf SM, Riaz U. Highly efficient photocatalytic degradation of amido black 10B dye using polycarbazole-decorated $TiO_2$ nanohybrids. ACS Omega 2017; doi: 10.1021/acsomega.7b01154
  • 64. Trovo AG, Hassan AK, Sillanpaa M, Tang WZ. Degradation of acid blue 161 by fenton and photo-fenton processes. International Journal of Environmental Science and Technology 2016; 147-158. doi: 10.1007/s13762-015-0854-6
  • 65. Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH. Enhanced photocatalytic activity of $Ce ^{3+}– TiO_2$ for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Applied Catalysis A: General 2005; 285: 181-189. doi: 10.1016/j.apcata.2005.02.025
  • 66. Gabriela Bonfanti V, Humberto JJ, Michael P, Vanessa Zanon B, Pedro AM. Regina De Fatima Peralta Muniz, $CeO_2 /TiO_2$ nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension. Journal of Photochemistry and Photobiology: A: Chemistry 2017. doi: 10.1016/j.jphotochem.2017.11.045
  • 67. Xie Y, Yuan C, Li X. Photosensitized and photocatalyzed degradation of azo dye using $Ln^{n+}-TiO_2$ sol in aqueous solution under visible light irradiation. Materila Sicence and Engineering B 2005; 117: 325–333. doi: 10.1016/j.mseb.2004.12.073
  • 68. Kumar A, Pandey G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Science and Engineering: International Journal 2017; 106-114. doi: 10.15406/mseij.2017.01.00018
  • 69. Rauf MA, Meetani MA, Hisaindee S. An overview on the photocatalytic degradation of azo dyes in the presence of $TiO_2$ doped with selective transition metals. Desalination 2011; 276: 13-27.doi: 10.1016/j.desal.2011.03.071
  • 70. Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M. Removal of the hazardous dye — Tartrazine by photodegradation on titanium dioxide surface. Material Science and Engineering: C 2011; 31: 1062-1067. doi: 10.1016/j.msec.2011.03.006
  • 71. Ferkous H, Hamdaoui O, Merouani S. Sonochemical degradation of naphthol blue black in water: effect of operating parameters. Ultrasonics Sonochemistry 2015. doi: 10.1016/j.ultsonch.2015.03.013
  • 72. Abhishek G, Munish M, Vijaya KB, Barman S. Experimental investigation on adsorption of amido black 10B dye onto zeolite synthesized from fly ash. Chemical Engineering Communications 2015; 37-41. doi: 10.1080/00986445.2013.836636
  • 73. Ajmal A, Majeed I, Malik N. Principles and mechanisms of photocatalytic dye degradation on $TiO_2$ based photocatalysts: a comparative overview. RSC Advances 2014; 37003-37026. doi: 10.1039/C4RA06658H
  • 74. Mamun K, Asw R, Fahmida K. Parameters affecting the photocatalytic degradation of dyes using $TiO_2$ : A review. Applied Water Science 2017; 7: 1569-1578. doi: 10.1007/s13201-015-0367-y
  • 75. Akpan UG, Hameed BH. Parameters affecting the photocatalytic degradation of dyes using $TiO_2$ -based photocatalysts: A review. Journal of Hazardous Materials 2009; 170: 520-529. doi: 10.1016/j.jhazmat.2009.05.039
  • 76. Meetani MA, Hisaindee SM, Abdullah F, Ashraf SS, Rauf MA. Liquid chromatography tandem mass spectrometry analysis of photodegradation of a diazo compound : A mechanistic study. Chemosphere 2010; 80422-427. doi: 10.1016/j.chemosphere.2010.04.065
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Determination of formaldehyde in textile dye and auxiliary chemicals with headspace gas chromatography-flame ionization detector

Ziya CAN, Ayşem ARDA, Korel GÜNEŞ

Preconcentration of trace amount Cu(II) by solid-phase extraction method using activated carbon-based ion-imprinted sorbent

Rukiye SAYGILI CANLIDİNÇ, Kübra TURAN, Orhan Murat KALFA

Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate

Sena ÇAĞATAY ÖZPINAR, Ali DOĞRU, Tuğba ONGUN SEVİNDİK, Ayşegül TEKBABA, Hatice TUNCA, Armağan GÜNSEL, Ahmet T. BİLGİÇLİ, M. Nilüfer YARAŞIR

A simple and rapid RP-HPLC method for the assessment of cobalamin (vitamin B12) in tilapia and snoek fishes

Labaran IBRAHIM, Aminu USMAN

Cerium and europium doped TiO2 thin films deposited by a sol-gel dip-coating process: characterization and photocatalytic activity toward dye degradation

Mika SILLANPAA, Dalanda HAMDI, Lobna MANSOURI, Latifa BOUSSELMI, Varsha SRIVASTAVA

The investigation of fluorescence and metal interaction properties of racemic 7,8,9,10-tetrahydro-3-hydroxy-4-(1-hydroxyethyl)benzo[c]chromen-6-one

Hayrettin Ozan GÜLCAN, Açelya MAVİDENİZ, Karar Tawfeeq SHUKUR, Okan SİRKECİOĞLU, Mustafa GAZİ

Effect of poly(ethylene-vinyl acetate) pour point depressant on the cold flow properties and crystallization behavior of soybean biodiesel blends fuel

Jinbao LIU, Chunhua WANG, Qian LIU, Fen ZHANG, Xiaojie LIU, Min SUN

Study on the alkylation of aromatic hydrocarbons and propylene

Wanglai DONG, Wentao MA, Xinyao LI, Xingbang HU, Zheng ZHOU

Chromatographic evaluation of tocols and sterols of processed canola oil and deodorizer distillate

Hüseyin KARA, Mustafa TOPKAFA, Siraj UDDIN, Hadia SHOAIB, Saba NAZ, Abdul Rauf KHASKHELI, Ahmed Raza SIDHU, Syed Tufail Hussain SHERAZI, Sarfaraz Ahmed MAHESAR, Hamide Filiz AYYILDIZ

Preparation, assessment, and swelling study of amphiphilic acrylic acid/chitosan-based semi-interpenetrating hydrogels

Mohammad Reza JOZAGHKAR, Amir SEPEHRIAN AZAR, Farshid ZIAEE, Fakhrosadat MIRTALEB