Study on the alkylation of aromatic hydrocarbons and propylene
Study on the alkylation of aromatic hydrocarbons and propylene
In order to improve the efficiency of the alkylation reaction to aromatic hydrocarbons and propylene, different types of catalysts were screened, including ultra-stable Y molecular sieves (USY), solid phosphoric acid (SPA), ZSM type molecular sieve (HZSM), etc. The effects of reaction temperature, catalyst loading, and reaction time on the conversion rate of aromatic hydrocarbons and the selectivity of target products were investigated using the high-pressure reaction device. The catalysts were characterized by XRD, BET, SEM, FT-IR, NH3 -TPD, and other methods. The experimental results show that the USY catalyst exhibits higher catalytic activity for alkylation. This catalyst can be used for the alkylation of different aromatic hydrocarbons. Good conversion and selectivity can be obtained. Futhermore, in a six-cycle experiment, the USY catalyst was reused without loss of efficiency.
___
- 1. Candu N, Florea M, Coman SM, Parvulescu V. Benzylation of benzene with benzyl alcohol on zeolite catalysts. Applied Catalysis A-general 2011; 393: 206-214. doi: 10.1016/j.apcata.2010.11.044
- 2. Díaz E, Ordóñez S, Vega A, Auroux A, Coca J. Benzylation of benzene over Fe-modified ZSM-5 zeolites: Correlation between activity and adsorption properties. Applied Catalysis A-general 2005; 295: 106-115. doi: 10.1016/j.apcata.2005.07.059
- 3. Leng K, Sun S, Wang B, Sun L, Xu W et al. Benzylation of benzene with benzyl chloride on iron-containing mesoporous mordenite. Catalysis Communications 2012; 28: 64-68. doi: 10.1016/j.catcom.2012.08.016
- 4. Bok T, Andriako E, Bachurina D, Knyazeva E, Ivanova I. Benzene alkylation with propylene in the presence of nanocrystalline zeolites BEA with different compositions. Petroleum Chemistry 2019; 59 (12): 1320-1325. doi: 10.1016/s0144-2449(05)80202-7
- 5. Olah GA. Alkylation and Related Reactions. Interscience Publishers a division of John Wiley & Sons: 1964. 6. Olah GA. Friedel-crafts chemistry. In Across Conventional Lines: Selected Papers of George A Olah Volume 1, World Scientific: 2003; pp 119-121.
- 7. Wang D, Sun H, Liu W, Shen Z, Yang W. Hierarchical ZSM-5 zeolite with radial mesopores: Preparation, formation mechanism and application for benzene alkylation. Frontiers of Chemical Science and Engineering 2020; 14: 248–257. doi: 10.1007/s11705-019-1853-9
- 8. Zhang H, Tang H, Xu J, Li Y, Yang Z et al. Enhancement of isobutane/butene alkylation by aromatic-compound additives in strong Brønsted acid. Fuel 2018; 231: 224-233. doi: 10.1016/0926-860x(93)80116-8
- 9. Coq B, Gourves V, Figuéras F. Benzylation of toluene by benzyl chloride over protonic zeolites. Applied Catalysis A: General 1993; 100 (1): 69-75. doi: 10.1016/0926-860X(93)80116
- 10. Li Y, Liu R, Zhao G, Zhou Z, Zhang J et al. Simulation and optimization of fixed bed solid acid catalyzed isobutane/2-butene alkylation process. Fuel 2018; 216: 686-696. doi: 10.1016/j.fuel.2017.12.050
- 11. Singhal S, Agarwal S, Arora S, Singhal N, Kumar A. Solid acids: potential catalysts for alkene–isoalkane alkylation. Catalysis Science & Technology 2017; 7 (24): 5810-5819.
- 12. Tanabe K, Hölderich W F. Industrial application of solid acid–base catalysts. Applied Catalysis A: General 1999; 181 (2): 399-434. doi: 10.1016/s0926-860x(98)00397-4
- 13. Csicsery S M. Shape-selective catalysis in zeolites. Zeolites 1984; 4 (3): 202-213. doi: 10.1016/0144-2449(84)90024-1
- 14. Patra C R, Kumar R. Isopropylation of xylenes catalyzed by Ultrastable Zeolite Y (USY) and some other solid acid catalysts. Journal of Catalysis 2002; 212 (2): 216-224. doi: 10.1006/jcat.2002.3776
- 15. Meng F, Ding Y, Meng W, Mi G, Qiu J. Modification of molecular sieves USY and their application in the alkylation reaction of benzene with cyclohexene. ChemistrySelect 2020; 5 (29): 8935-8941. doi: 10.1002/slct.202002320
- 16. Ponomareva O, Bok T, Andriako E, Shkuropatov A, Knyazeva E et al. Comparative study of catalysts based on zeolites BEA and MWW in benzene alkylation with propylene. Petroleum Chemistry 2019; 59 (8): 918-924. doi: 10.1134/s0965544119080152
- 17. Liu Y, Zou Y, Jiang H, Gao H, Chen R. Deactivation mechanism of beta-zeolite catalyst for synthesis of cumene by benzene alkylation with isopropanol. Chinese Journal of Chemical Engineering 2017; 25 (9): 1195-1201. doi: 10.1016/j.cjche.2016.11.001
- 18. Corma A, Martinez A, Martinez C. The role of extraframework aluminum species in USY catalysts during isobutane/2-butene alkylation. Applied Catalysis A: General 1996; 134 (1): 169-182. doi: 10.1016/0926-860x(95)00228-6
- 19. Aguilar J, Corma A, Melo F, Sastre E. Alkylation of biphenyl with propylene using acid catalysts. Catalysis Today 2000; 55 (3): 225-232. doi: 10.1016/s0920-5861(99)00250-3
- 20. Ghirga M, Valtorta L, Calcagno B. Process for the production of cumene. In Google Patents: 1982.
- 21. Gerzeliev I, Zhmylev V, Khusaimova D, Shkuropatov A, Knyazeva E et al. Effect of binder on the properties of MWW zeolite catalysts in benzene alkylation with propylene. Petroleum Chemistry 2019; 59 (7): 695-700. doi: 10.1134/s0965544119070041
- 22. Gerzeliev I, Ostroumova V, Zhmylev V, Khadzhiev S. Comparative Evaluation of Zeolite Catalysts of Benzene Alkylation. Russian Journal of Applied Chemistry 2018; 91 (6): 959-963. doi: 10.1134/s1070427218060125
- 23. Schmidt RJ, Jan D, Miller RM, Johnson JA. Solid acid catalyst and process for decomposition of cumene hydroperoxide. In Google Patents: 2008.
- 24. Selvaraj M, Jeon S, Han J, Sinha P, Lee TG. A novel route to produce 4-t-butyltoluene by t-butylation of toluene with t-butylalcohol over mesoporous Al-MCM-41 molecular sieves. Applied Catalysis A: General 2005; 286 (1): 44-51. doi: 10.1016/j.apcata.2005.02.027
- 25. Pai S, Gupta U, Chilukuri S. Butylation of toluene: Influence of zeolite structure and acidity on 4-tert-butyltoluene selectivity. Journal of Molecular Catalysis A: Chemical 2007; 265 (1-2): 109-116. doi: 10.1016/j.molcata.2006.09.046
- 26. Sridevi U, Rao B, Pradhan NC, Tambe S, Satyanarayana C et al. Kinetics of isopropylation of benzene over Hbeta catalyst. Industrial & Engineering Chemistry Research 2001; 40 (14): 3133-3138. doi: 10.1021/ie000929s
- 27. Reddy K, Rao B, Shiralkar V. Alkylation of benzene with isopropanol over zeolite beta. Applied Catalysis A: General 1993; 95 (1): 53-63. doi: 10.1016/0926-860x(93)80196-w
- 28. Ren X, Miao G, Xiao Z, Ye F, Li Z et al. Catalytic adsorptive desulfurization of model diesel fuel using TiO2/SBA-15 under mild conditions. Fuel 2016; 174: 118-125. doi: 10.1016/j.fuel.2016.01.093
- 29. Wang Y, Song H, Han Y, Sun X, Zhang J et al. Alkylation of toluene with tert-butyl alcohol over different zeolites with the same Si/Al ratio. Russian Journal of Applied Chemistry 2020: 93 (7): 991-997. doi: 10.1134/s1070427220070071
- 30. Kikuchi E, Sawada K, Maeda M, Matsuda T. 4.4 Alkylation of naphthalene with propene to 2, 6-diisopropylnaphthalene on mordenite catalysts. In Studies in Surface Science and Catalysis, Elsevier 1994; 90: 391-396. doi: 10.1016/s0167-2991(08)61849-2
- 31. Bian K, Zhang A, Yang H, Fan B, Xu S et al. Synthesis and characterization of Fe-substituted ZSM-5 zeolite and its catalytic performance for alkylation of benzene with dilute ethylene. Industrial & Engineering Chemistry Research 2020. doi: 10.1021/acs.iecr.0c01909
- 32. Gabrienko AA, Arzumanov SS, Toktarev AV, Freude D, Haase JR et al. Propylene transformation on Zn-modifiedzeolite: is there any difference in the effect of Zn2+ cations or ZnO species on the reaction occurrence? The Journal of Physical Chemistry C 2019; 123 (45): 27573-27583. doi: 10.1021/acs.jpcc.9b07672
- 33. Asaftei IV, Ignat M, Lungu CN, Sandu I, Mahu E. Alkylation of benzene with technical fraction propylene-propane over modified B-(Al)- HZSM-5 catalysts. Revista de Chimie 2019; 70 (8): 2753-2758. doi: 10.37358/rc.19.8.7421
- 34. Kolesnikov I, Vinokurov V, Gushchin P, Ivanov E, Kolesnikov S et al. Efficient catalysts for benzene alkylation with olefins. Catalysis Communications 2016; 82: 1-6. doi: 10.1016/j.catcom.2016.04.001
- 35. Wang YH, Wang JJ, Liang JH, Wang JG, Cheng J et al. Shape-selective alkylation of biphenyl with cyclohexanol over MCM-22 zeolite catalyst modified by SiO2. Acta Physico-Chimica Sinica 2017; 33 (11): 2277-2283. doi: 10.3866/PKU.WHXB201705251
- 36. Asaftei IV, Sandu I, Lungu NC, Spac AF, Ignat M. Transformation of gaseous technical mixture of the alkanes and alkenes into liquid fraction over Ni-HZSM-5 obtained by ionic exchange. Revista de Chimie 2018; 69 (4): 938-943. doi: 10.37358/rc.18.4.6232
- 37. Song Y, Fu H, Huang C, Jin W, Wang Z et al. Alkylation of naphthalene with 2-butene over zeolite catalysts. Petrochemical Technology 2014; 43 (2): 144-149.
- 38. Craciun I, Reyniers MF, Marin GB. Liquid-phase alkylation of benzene with octenes over Y zeolites: Kinetic modeling including acidity descriptors. Journal of Catalysis 2012; 294: 136-150. doi: 10.1016/j.jcat.2012.07.014
- 39. Lopez‐Orozco S, Inayat A, Schwab A, Selvam T, Schwieger W. Zeolitic materials with hierarchical porous structures. Advanced Materials 2011; 23 (22‐23): 2602-2615. doi: 10.1002/adma.201100462
- 40. Mravec D, Zavadan P, Kaszonyi A, Joffre J, Moreau P. Tert-butylation of toluene over zeolite catalysts. Applied Catalysis A: General 2004; 257 (1): 49-55. doi: 10.1016/s0926-860x(03)00633-1
- 41. Liu Z, Moreau P, Fajula F. Liquid phase selective alkylation of naphthalene with t-butanol over large pore zeolites. Applied Catalysis A: General 1997; 159 (1-2): 305-316. doi: 10.1016/s0926-860x(97)00060-4
- 42. Anand R, Khaire S, Maheswari R, Gore K. Alkylation of biphenyl with t-butylalcohol over modified Y zeolites. Journal of Molecular Catalysis A: Chemical 2004; 218 (2): 241-246. doi: 10.1016/j.molcata.2004.04.017
- 43. Sastre G, Catlow C. Corma A. Diffusion of benzene and propylene in MCM-22 zeolite. A molecular dynamics study. The Journal of Physical Chemistry B 1999; 103 (25): 5187-5196. doi: 10.1021/jp984776m
- 44. Bigey C, Su BL. Propane as alkylating agent for alkylation of benzene on HZSM-5 and Ga-modified HZSM-5 zeolites. Journal of Molecular Catalysis A: Chemical 2004; 209 (1-2): 179-187. doi: 10.1016/j.molcata.2003.08.023
- 45. Rotman D. Mobil/Badger to market zeolite-based cumene technology. Chemical Week 1993; 152 (7): 9.
- 46. Xing S, Liu K, Wang T, Zhang R, Han M. Elucidation of the mechanism and structure–reactivity relationship in zeolite catalyzed alkylation of benzene with propylene. Catalysis Science & Technology 2021; 11 (8): 2792-2804. doi: 10.1039/d0cy02374d
- 47. Grzechowiak JR, Rynkowski J, Wereszczako-Zieliñska I. Catalytic hydrotreatment on alumina–titania supported NiMo sulphides. Catalysis Today 2001; 65 (2-4): 225-231. doi: 10.1016/s0920-5861(00)00562-9
- 48. Ren XY, Cao JP, Zhao XY, Yang Z, Liu TL et al. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5. Fuel 2018; 218: 33-40. doi: 10.1016/j.fuel.2018.01.017
- 49. Kordatos K, Gavela S, Ntziouni A, Pistiolas K, Kyritsi A et al. Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash. Microporous and Mesoporous Materials 2008; 115 (1-2): 189-196. doi: 10.1016/j.micromeso.2007.12.032
- 50. Flanigen EM, Khatami H, Szymanski HA. Infrared structural studies of zeolite frameworks. In ACS Publications: 1971. doi: 10.1021/ba-1971- 0101.ch016
- 51. Jia Y, Wang J, Zhang K, Chen G, Yang Y et al. Hierarchical ZSM-5 zeolite synthesized via dry gel conversion-steam assisted crystallization process and its application in aromatization of methanol. Powder Technology 2018; 328: 415-429. doi: 10.1016/j.powtec.2018.01.022
- 52. Sabarish R, Unnikrishnan G. Synthesis, characterization and catalytic activity of hierarchical ZSM-5 templated by carboxymethyl cellulose. Powder technology 2017; 320: 412-419. doi: 10.1016/j.powtec.2017.07.041
- 53. Narayanan S, Vijaya JJ, Sivasanker S, Ragupathi C, Sankaranarayanan T et al. Hierarchical ZSM-5 catalytic performance evaluated in the selective oxidation of styrene to benzaldehyde using TBHP. Journal of Porous Materials 2016; 23 (3): 741-752. doi: 10.1007/s10934-016-0129-8
- 54. Ren XY, Cao JP, Zhao XY, Shen WZ, Wei XY. Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5. Journal of Analytical and Applied Pyrolysis 2018; 130: 190-197. doi: 10.1016/j.jaap.2018.01.010
- 55. Gille T, Seifert M, Marschall MS, Bredow S, Schneider T et al. Conversion of oxygenates on H-ZSM-5 zeolites-effects of feed structure and Si/Al ratio on the product quality. Catalysts 2021; 11 (4): 432. doi: 10.3390/catal11040432