A BODIPY based probe for the reversible “turn on” detection of Au(III) ions

A BODIPY based probe for the reversible “turn on” detection of Au(III) ions

A new “turn on” fluorescent probe for the rapid and selective detection of Au3+ ions over other metal ions was developed. The probe design was constructed on a BODIPY-2-aminopyridine skeleton showing a weak fluorescence emission signal which increased substantially after the coordination of $Au^{3+}$ ions. The probe displayed remarkable sensing performances such as a low limit of detection (17 nM), a short response time (

___

  • 1. Shahzad SA, Sajid MA, Khan ZA, Canseco-Gonzalez D. Gold catalysis in organic transformations: A review. Synthetic Communications 2017; 47 (8): 735-755. doi: 10.1080/00397911.2017.1280508
  • 2. Campeau D, Rayo DFL, Mansour A, Muratov K, Gagosz F. Gold-catalyzed reactions of specially activated alkynes, allenes, and alkenes. Chemical Reviews 2021; 121 (14): 8756-8867. doi: 10.1021/acs.chemrev.0c00788
  • 3. Zheng Z, Ma X, Cheng X, Zhao K, Gutman K et al. Homogeneous gold-catalyzed oxidation reactions. Chemical Reviews 2021; 121 (14): 8979–9038. doi: 10.1021/acs.chemrev.0c00774
  • 4. Goodman P. Current and future uses of gold in electronics. Gold Bulletin 2002; 35: 21-26. doi: 10.1007/BF03214833
  • 5. Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ et al. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 2017; 22 (9): 1445. doi: 10.3390/molecules22091445
  • 6. Mohd-Zahid MH, Mohamud R, Abdullah CAC, Lim J, Alem H et al. Colorectal cancer stem cells: A review of targeted drug delivery by gold nanoparticles. RSC Advances 2020; 10 (2): 973-985. doi: 10.1039/C9RA08192E
  • 7. Shaw III CF. Gold-based therapeutic agents. Chemical Reviews 1999; 99 (9): 2589 − 2600. doi: 10.1021/cr980431o
  • 8. Yeo CI, Ooi KK, Tiekink ERT. Gold-based medicine: A paradigm shift in anti-cancer therapy? Molecules 2018; 23(6): 1410. doi: 10.3390/ molecules23061410
  • 9. Balfouriera A, Kolosnjaj-Tabib J, Luciania N, Carna F, Gazeau F. Gold-based therapy: From past to present. The Proceedings of the National Academy of Sciences 2020; 117 (37): 22639-22648. doi: 10.1073/pnas.2007285117
  • 10. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005; 1 (3): 325-327. doi: 10.1002/smll.200400093.
  • 11. Nyarko E, Hara T, Grab DJ, Habib A, Kim Y et al. In vitro toxicity of palladium(II) and gold(III) porphyrins and their aqueous metal ion counterparts on Trypanosoma brucei brucei growth. Chemico-Biological Interactions 2004; 148 (1-2): 19-25. doi: 10.1016/j. cbi.2004.03.004.
  • 12. Carter KP, Young AM, Palmer AE. fluorescent sensors for measuring metal ions in living systems. Chemical Reviews 2014; 114 (8): 4564- 4601. doi: 10.1021/cr400546e
  • 13. Singha S, Kim D, Seo H, Cho WC, Ahn KH. Fluorescence sensing systems for gold and silver species. Chemical Society Reviews 2015; 44 (13): 4367-4399. doi: 10.1039/C4CS00328D
  • 14. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU. Yoon J et al. Fluorescent chemosensors: the past, present and future. Chemical Society Reviews 2017; 46 (23): 7105-7123. doi: 10.1039/C7CS00240H
  • 15. Kwon N, Hu Y, Yoon J. Fluorescent chemosensors for various analytes including reactive oxygen species, biothiol, metal ions, and toxic gases. ACS Omega 2018; 3(10): 13731-13751. doi: 10.1021/acs.chemrev.0c00774
  • 16. Wu D, Chen L, Lee W, Ko G, Yin J et al. Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coordination Chemistry Reviews 2018; 354: 74-97. doi: 10.1016/j.ccr.2017.06.011
  • 17. Ucuncu M, Karakus E, Emrullahoglu M. A BODIPY-based fluorescent probe for ratiometric detection of gold ions: utilization of Z-enynol as the reactive unit. Chemical Communications 2016; 52 (53): 8247-8250. doi: 10.1039/C6CC04100K
  • 18. Wang EZ, Pang LF, Zhou YM, Zhang JL, Yu F et al. A high-performance Schiff-base fluorescent probe for monitoring Au3+ in zebrafish based on BODIPY. Biosensors and Bioelectronics 2016; 77: 812–817. doi: 10.1016/j.bios.2015.10.051
  • 19. Emrullahoglu M, Karakus E, Ucuncu M. A rhodamine based “turn-on” chemodosimeter for monitoring gold ions in synthetic samples and living cells. Analyst 2013; 138 (13): 3638-3641. doi: 10.1039/C3AN00024A
  • 20. Pitsanuwong C, Boonwan J, Chomngam S, Wechakorn K, Kanjanasirirat P et al. A Rhodamine-based fluorescent chemodosimeter for $Au^{3+}$ in aqueous solution and living cells. Journal of Fluorescence 2021; 31 (4): 1211-1218. doi: 10.1007/s10895-021-02725-0.
  • 21. Kambam S, Wang BH, Wang F, Wang Y, Chen HY et al. A highly sensitive and selective fluorescein-based fluorescence probe for $Au^{3+}$ and its application in living cell imaging. Sensors and Actuators B Chemical 2015; 209: 1005-1010. doi: 10.1016/j.snb.2014.12.085.
  • 22. Cetintas C, Karakus E, Ucuncu M, Emrullahoglu M. A fluorescein-based chemodosimeter for selective gold(III) ion monitoring in aqueous media and living systems. Sensors and Actuators B Chemical 2016; 234: 109-114. doi: 10.1016/j.snb.2016.04.158.
  • 23. Karakus E, Cakan-Akdogan G, Emrullahoglu M. A guanidinium modified rhodamine-based fluorescent probe for in vitro/vivo imaging of gold ions. Analytical Methods 2015; 7 (19): 8004-8008. doi:10.1039/C5AY01581B
  • 24. Wang Q, Feng Y, Jiang J, Wang WJ, Chen JY et al. A coumarin-based colorimetric and fluorescent probe for the highly selective detection of Au3+ ions. Chinese Chemical Letters 2016; 27 (9): 1563–1566. doi: 10.1016/j.cclet.2016.02.021
  • 25. Li Y, Qiu YX, Zhang JJ, Zhu XY, Zhu B et al. Naphthalimide derived fluorescent probes with turn-on response for $Au^{3+}$ and the application for biological visualization. Biosensors and Bioelectronics 2016; 83: 334-338. doi: 10.1016/j.bios.2016.04.034
  • 26. Wang W, Zhang W, Feng Y, Wang S, Lei H et al. Strategically modified highly selective mitochondria-targeted two-photon fluorescent probe for $Au^{3+}$ employing Schiff-base: Inhibited C=N isomerization vs. hydrolysis mechanism. Dyes and Pigments 2018; 150: 241-251. doi: 10.1016/j.dyepig.2017.12.019
  • 27. Mondal S, Manna SK, Pathak S, Ghosh A, Datta P et al. A “turn-on” fluorescent and colorimetric chemodosimeter for selective detection of $Au^{3+}$ ions in solution and in live cells via Au3+-induced hydrolysis of a rhodamine-derived Schiff base. New Journal of Chemistry 2020; 44 (19): 7954-7961. doi: 10.1039/D0NJ01273D
  • 28. Wang J, Lin W, Yuan L, Song J, Gao W. Development of a reversible fluorescent gold sensor with high selectivity. Chemical Communications 2011; 47 (46); 12506-12508. doi: 10.1039/C1CC15086C
  • 29. Ucuncu M, Karakus E, Emrullahoglu M. A BODIPY/pyridine conjugate for reversible fluorescence detection of gold(III) ions. New Journal of Chemistry 2015; 39 (11): 8337-8341. doi: 10.1039/C5NJ01664A
  • 30. Silpcharu K, Samang P, Chansaenpak K, Sukwattanasinitt M, Rashatasakhon P. Selective fluorescent sensors for gold(III) ion from N-picolyl sulfonamide spirobifluorene derivatives. Journal of Photochemistry and Photobiology A: Chemistry 2020; 402: 112823-112830. doi: 10.1016/j.jphotochem.2020.112823
  • 31. Guliyev R, Buyukcakir O, Sozmen F, Bozdemir OA. Cyanide sensing via metal ion removal from a fluorogenic BODIPY complex. Tetrahedron Letters 2009; 50: 5139-5141. doi:10.1016/j.tetlet.2009.06.117
  • 32. Xu K, Sukhanov AA, Zhao Y, Zhao J, Ji W, Peng X, Escudero D, Jacquemin D, Voronkova VK. Unexpected nucleophilic substitution reaction of BODIPY: Preparation of the BODIPY–TEMPO triad showing radical-enhanced intersystem crossing. European Journal of Organic Chemistry 2018; 885-895. doi:10.1002/ejoc.201701724
  • 33. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric Identification of Organic Compounds. Hoboken, NJ: John Wiley & Sons, 2005.
  • 34. Fraser RR, Renaud RN, Saunders JK, Wigfield YY. Dihedral angular dependence of H-N-C-H coupling constants. Protonated amines in trifluoroacetic acid. Canadian Journal of Chemistry 1973; 51, 2433-2437. doi: 10.1139/v73-363
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Cerium and europium doped TiO2 thin films deposited by a sol-gel dip-coating process: characterization and photocatalytic activity toward dye degradation

Mika SILLANPAA, Dalanda HAMDI, Lobna MANSOURI, Latifa BOUSSELMI, Varsha SRIVASTAVA

Preparation, assessment, and swelling study of amphiphilic acrylic acid/chitosan-based semi-interpenetrating hydrogels

Mohammad Reza JOZAGHKAR, Amir SEPEHRIAN AZAR, Farshid ZIAEE, Fakhrosadat MIRTALEB

Chromatographic evaluation of tocols and sterols of processed canola oil and deodorizer distillate

Hüseyin KARA, Mustafa TOPKAFA, Siraj UDDIN, Hadia SHOAIB, Saba NAZ, Abdul Rauf KHASKHELI, Ahmed Raza SIDHU, Syed Tufail Hussain SHERAZI, Sarfaraz Ahmed MAHESAR, Hamide Filiz AYYILDIZ

A BODIPY based probe for the reversible “turn on” detection of Au(III) ions

Muhammed ÜÇÜNCÜ

Selective catalytic hydrogenation of cellulose into sorbitol with Ru-based catalysts

Aslı YÜKSEL, Ceren ORAK, Aycan SAPMAZ

Increasing the biocompatibility of graphene-based hybrid nanostructures with glycopolymer

Belma ZENGİN KURT, Aydan DAĞ, Pınar Sinem OMURTAG ÖZGEN, Zehra DURMUŞ

In situ prepared tungsten(VI) oxide supported Pd0 NPs, remarkable activity and reusability in H2 releasing from dimethylamine borane

Seda KARABOĞ

Bovine serum albumin detection by using molecularly imprinted surface plasmon resonance sensors

Ali ARAZ

Schiff base functionalized silica gel for simultaneous separation and preconcentration of Cu(II), Ni(II), and Cd(II) in pharmaceuticals and water samples

Sema BAĞDAT, Feyzullah TOKAY

Development of dual enzyme responsive molecular AND logic gate

Sündüs ERBAŞ ÇAKMAK