Synthesis and characterization of $NiFe_2O_4$ nano-octahedrons by EDTA-assisted hydrothermal method

Synthesis and characterization of $NiFe_2O_4$ nano-octahedrons by EDTA-assisted hydrothermal method

Octahedral-like $NiFe_2O_4$ ferrite nanocrystals were synthesized using EDTA-assisted hydrothermal method under mild conditions. XRD and FTIR analysis were used for composition and structure investigation. XRD analysis revealed a pure ferrite phase with high crystallinity. Morphological investigation by SEM showed octahedral nanocrystals with an average particle size of ∼40 nm. Crystallite size calculated from XRD peak broadening resulted in an average crystallite size of 39 nm, matching well with the SEM observations. TEM analysis and corresponding electron diffraction confirmed the octahedral morphology and single crystallinity of octahedral nanoparticles. Magnetic measurements showed that $NiFe_2O_4$ octahedrons have smaller coercivity than bulk ferrite due to the low shape anisotropy.

___

  • 1. Y. Qu , H. Yang, N. Yang, Y. Fan, H. Zhu, and G. Zou, Mater. Lett. 60, 3548-3522 (2006).
  • 2. P.C. Dorsey, P. Lubit z, D.B. Chrisey, and J.S. Horwit z, J. Appl. Phys. 85, 6338-6345 (1999).
  • 3. M.H. Sousa and F.A. Tourinho, J. Phys. Chem. B 105, 1168-1175 (2001).
  • 4. F. Mazaleyratand L.K. Varga, J. Magn. Magn. Mater. 215, 253-259 (2000).
  • 5. D.E. Speliotis, J. Magn. Magn. Mater. 93, 29-35 (1999).
  • 6. Y. Cheng, Y. Zheng, Y. Wang, F. Bao and Y. Qin, J. Solid State Chem. 178, 2394-2397 (2005).
  • 7. M.A. Gabal, J. Phys. Chem. Solids 64, 1375-1385 (2003).
  • 8. C.G. Ramankutty and S. Sugunan, Appl. Catal. A 218, 39-51 (2001).
  • 9. C.V.G. Reddy, S.V. Manorama and V.J. Rao, Sens. Actuators B: Chemical 55, 90-95 (1999).
  • 10. Z.H. Zhou, J.M. Wang, H.S.O. Chan, T. Yu and Z.X. Shen, J. Appl. Phys. 91, 6015-6020 (2002).
  • 11. I.E. Candlish, B.H. Kear and B.K. Kim, Nanostuct. Mater. 1, 119-124 (1992).
  • 12. G. Skandan, H. Hahn, M. Roddy and W.R. Cannon, J. Am. Ceram. Soc. 77, 1706-1710 (1994).
  • 13. M. Kishimoto, Y. Sakurai and T. Ajima, J. Appl. Phys. 76, 7506-7509 (1994).
  • 14. Q. Chen and Z.J. Zhang, Appl. Phys. Lett. 73, 3156-3158 (1998).
  • 15. S. Music, S. Popovic and S. Dalipi, J. Mat. Sci. 28, 1793-1798 (1993).
  • 16. R.N. Singh, N.K. Singh and J.P. Singh, Electrochim. Acta 47, 3873-3879 (2002).
  • 17. X.H. Yang, X. Wang and Z.D. Zhang, J. Cryst. Growth 277, 467-470 (2005).
  • 18. Y. Sui, D.P. Xu, F.L. Zheng and W.H. Su, J. Appl. Phys. 80, 719-723 (1996).
  • 19. A.H. Morrish and K.J. Haneda, Appl. Phys. 52, 2496-2498 (1981).
  • 20. A. Bee, R. Massartan d S.J. Neveu, J. Magn. Magn. Mater. 149, 6-9 (1995).
  • 21. H.F. Yu and A.M. Gadalla, J. Mater. Res. 11, 663-670 (1996).
  • 22. T. Pannaparayil, R. Marande and S.J. Komarneni, J. Appl. Phys. 75, 1245-1249 (1994).
  • 23. N. Moumen, P. Veilleta nd M.P. Pileni, J. Magn. Magn. Mater. 149, 67-71 (1995).
  • 24. C.L. Huang and E. Matijevic, Solid State Ion. 84, 249-258 (1996).
  • 25. N.S. Kommareddi, M. Tata, V.T. John, G.L. McPherson, M.F. Herman and Y.S. Lee, Chem. Mater. 8, 801-809 (1996).
  • 26. R.H. Kodama, A.E. Berkowitz and E.J. Mcniff, Phys. Rev. Lett. 77, 394-397 (1996). 27. J. Wang, Q. Chen, B. Hou and Z. Peng, Eur. J. Inorg. Chem. 6, 1165-1168 (2004).
  • 28. Q. Song and Z.J. Zhang, J. Am. Chem. Soc. 126, 6164-6168 (2004).
  • 29. M.M. Bucko and K. Haberko, J. Eur. Ceram. Soc. 27, 723-727 (2007).
  • 30. D.E. Zhang, X.J. Zhang, X.M. Ni, J.M. Song and H.G. Zheng, J. Magn. Magn. Mater. 305, 68-70 (2006).
  • 31. K.P. Chae, J. Lee, H.S. Kweon and Y.B. Lee, J. Magn. Magn. Mater. 283, 103-108 (2004).
  • 32. N. Gupta, A.Verna, S.C. Kashyap and D.C. Dube, J. Magn. Magn. Mater. 308, 137-142 (2007).
  • 33. Z. Li, H. Chen and M. Gao, Chem. Mater. 16, 1391-1393 (2004).
  • 34. Y. Ahn, E.J. Choi, S. Kim and H.N. Ok, Mater. Lett. 50, 47-52 (2001).
  • 35. N. Hanh, O.K. Quy, N.P. Thuy, L.D. Tung and L. Spinu, Physica B 327, 382-384 (2003).
  • 36. H.M. Zaki and S.F. Mansour, J. Phys. Chem. Sol. 67, 1643-1648 (2006).
  • 37. S. Rana, A. Gallo, R.S. Srivastava and R.D.K. Misra, Acta Biomater. 3, 233-242 (2007).
  • 38. X. Huang and Z. Chen, J. Magn. Magn. Mater. 280, 37-43 (2004).
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Catalytic Combustion of Ethyl Acetate

Tuğba Gürmen ÖZÇELİK, Süheyda ATALAY, Erden ALPAY

Preconcentration of Trace Elements on Amberlite XAD-4 Resin Functionalised with 1,2-bis (o-aminophenylthio) Ethane and Their Determination by FAAS in Environmental Samples

Ömer DALMAN, Volkan Numan BULUT

Synthesis and characterization of $NiFe_2O_4$ nano-octahedrons by EDTA-assisted hydrothermal method

Harun BAYRAKDAR, Abdulhadi BAYKAL, Nermin KASAPOĞLU, Muhammet S. TOPRAK, Yüksel KÖSEOĞLU

Dinuclear molybdenum tetracarbonyl complexes of tetradentate nitrogen ligands and intermolecular hydrogen bonding in the crystal structure of N,N'-bis-(1-(pyridin-2-yl) ethylidene)-ethane-1,2-diamine

Ayfer MENTEŞ, Orhan BÜYÜKGÜNGÖR, M. Emre HANHAN, Seda SEZEK

Synthesis of the amide derivatives of 3-(1-(3- pyridazinyl)-5-phenyl-1H-pyrazole-3-yl)propanoic acids as potential analgesic compounds

Murat ŞÜKÜROĞLU, Mustafa ARK, Erden BANOĞLU, Çalışkan Burcu ERGÜN, Nacak Sultan BAYTAŞ, Eda AYPAR

Examination of Some Commercial Sorptive Organobentonites

Müşerref ÖNAL

Synthesis of the Amide Derivatives of 3-[1-(3-Pyridazinyl)-5-phenyl-1H-pyrazole-3-yl]propanoic Acids as Potential Analgesic Compounds

Erden BANOĞLU, Murat ŞÜKÜROĞLU, Burcu Çalişkan ERGÜN

The Direct Electrochemical Synthesis of Ti(II), Fe(II), Cd(II), Sn(II), and Pb(II) Complexes with N, N´-Bis(Salicylidene)-o-Phenylenediamine

Jianning LIU, Bing ZHANG, Bowan WU, Kejun ZHANG, Shenli HU

Synthesis and Characterization of NiFe2O4 Nano-Octahedrons by EDTA-Assisted Hydrothermal Method

Nermin KASAPOĞLU, Abdulhadi BAYKAL, Muhammet S. TOPRAK

Fused Heterocycles: Synthesis of Some New Imidazopyridines as Anti-Mycobacterial Agents

Birgül Özden KASIMOĞULLARI, Zafer CESUR