Synthesis and bioactivities of 1-(4-hydroxyphenyl)-2-((heteroaryl)thio)ethanones as carbonic anhydrase I, II and acetylcholinesterase inhibitors

Synthesis and bioactivities of 1-(4-hydroxyphenyl)-2-((heteroaryl)thio)ethanones as carbonic anhydrase I, II and acetylcholinesterase inhibitors

The discovery of enzyme targeting inhibitors is a popular area of drug research. Biological activities of the compounds bearing phenol and heteroaryl groups make them popular groups in drug design targeting important enzymes such as acetylcholinesterase (AChE, E.C.3.1.1.7) and carbonic anhydrases (CAs, EC 4.2.1.1). 1-(4-hydroxyphenyl)- 2-((aryl)thio)ethanones as possible AChE and CAs inhibitors were synthesized, and their chemical structures were confirmed by IR, $^{1} H NMR, ^{13} C NMR$, and HRMS. The compounds 2 and 4 were found potent AChE inhibitors with the Ki values of 22.13 ±1.96 nM and 23.71 ±2.95 nM, respectively, while the compounds 2 (Ki = 8.61 ±0.90 nM, on hCA I) and 1 (Ki = 8.76 ±0.84 nM, on hCA II) had considerable CAs inhibitory potency. The lead compounds may help the scientists for the rational designing of an innovative class of drug candidates targeting enzyme-based diseases.

___

  • 1. Stasiuk M, Bartosiewicz D, Kozubek A. Inhibitory effect of some natural and semisynthetic phenolic lipids upon acetylcholinesterase activity. Food Chemistry 2008; 108 (3): 996-1001. doi: 10.1016/j.foodchem.2007.12.011
  • 2. Bytyqi-Damoni A, Kestane A, Taslimi P, Tuzun B, Zengin M et al. Novel carvacrol based new oxypropanolamine derivatives: design, synthesis, characterization, biological evaluation, and molecular docking studies. Journal of Molecular Structure 2020; 1202 (2020): 127297. doi: 10.1016/j.molstruc.2019.127297
  • 3. Yamali C, Gul HI, Kazaz C, Levent S, Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorganic Chemistry 2020; 96 (2020): 103627. doi: 10.1016/j.bioorg.2020.103627
  • 4. Li G, Hong G, Li X, Zhang Y, Xu Z et al. Synthesis and activity towards Alzheimer’s disease in vitro: tacrine, phenolic acid and ligustrazine hybrids. European Journal of Medicinal Chemistry 2018; 148: 238-254. doi: 10.1016/j.ejmech.2018.01.028
  • 5. El-Sayed NA, Farag AE, Ezzat MAF, Akincioglu H, Gülçin İ et al. Design, synthesis, in vitro and in vivo evaluation of novel pyrrolizine-basedcompounds with potential activity as cholinesterase inhibitors and anti-Alzheimer’s agents. Bioorganic Chemistry 2019; 93: 103312. doi: 10.1016/j.bioorg.2019.103312
  • 6. Tripathi PN, Srivastava P, Sharma P, Seth A, Shrivastava SK. Design and development of novel N -(pyrimidin2-yl)-1,3,4-oxadiazole hybrids to treat cognitive dysfunctions. Bioorganic and Medicinal Chemistry 2019; 27 (7): 1327-1340. doi: 10.1016/j.bmc.2019.02.031
  • 7. Yin L, Wang L, Liu XJ, Cheng FC, Shi DH et al. Synthesis and bioactivity of novel C2-glycosyl triazole derivatives as acetylcholinesterase inhibitors. Heterocyclic Communications 2017; 23 (3): 231-236. doi: 10.1515/hc-2016-0163
  • 8. Mehrun N, Munawar MA, Chattha FA, Kousar S, Munir J et al. Synthesis of novel triazoles and a tetrazole of escitalopram as cholinesterase inhibitors. Bioorganic and Medicinal Chemistry 2015; 23 (17): 6014-6024. doi: 10.1016/j.bmc.2015.06.051
  • 9. Acar Cevik U, Saglik BN, Levent S, Osmaniye D, Kaya Cavuşoglu B et al. Synthesis and AChE-inhibitory activity of new benzimidazole derivatives. Molecules 2019; 24 (5): 861-878. doi: 10.3390/molecules24050861
  • 10. Ivanova L, Karelson M, Dobchev DA. Multitarget approach to drug candidates against Alzheimer’s disease related to AChE, SERT, BACE1 and GSK3β protein targets. Molecules 2020; 25: 1846. doi: 10.3390/molecules25081846
  • 11. Chaves S, Resta S, Rinaldo F, Costa M, Josselin R, Gwizdala K, Piemontese L, Capriati V, Pereira-Santos AR, Cardoso SM, Santos MA. Design, synthesis, and in vitro evaluation of hydroxybenzimidazole-donepezil analogues as multitarget-directed ligands for the treatment of Alzheimer’s disease. Molecules 2020; 25: 985. doi: 10.3390/molecules25040985
  • 12. Cetin Cakmak KC, Gülçin İ. Anticholinergic and antioxidant activities of usnic acid-An activity-structure insight. Toxicology Reports 2019; 6: 1273-1280. doi: 10.1016/j.toxrep.2019.11.003
  • 13. Sang Z, Wang K, Wang H, Wang H, Ma Q et al. Design, synthesis and biological evaluation of 2-acetyl-5-O- (amino-alkyl)phenol derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorganic and Medicinal Chemistry Letters 2017; 27 (22): 5046-5052. doi: 10.1016/j.bmcl.2017.09.057
  • 14. Boztaş M, Çetinkaya Y, Topal M, Gülçin İ, Menzek A et al. Synthesis and carbonic anhydrase isoenzymes I, II, IX, and XII inhibitory effects of dimethoxy-bromophenol derivatives incorporating cyclopropane moieties. Journal of Medicinal Chemistry 2015; 58 (2): 640-650. doi: 10.1021/jm501573b
  • 15. Topal M, Gülçin İ. Rosmarinic acid: a potent carbonic anhydrase isoenzymes inhibitor. Turkish Journal of Chemistry 2014; 38 (5): 894-902. doi: 10.3906/kim-1403-5
  • 16. Arabaci B, Gülçin İ, Alwasel S. Capsaicin: a potent inhibitor of carbonic anhydrase isoenzymes. Molecules 2014; 19 (7): 10103-10114. doi: 10.3390/molecules190710103
  • 17. Yıldırım A, Atmaca U, Keskin A, Topal M, Çelik M et al. N-Acylsulfonamides strongly inhibit human carbonic anhydrase isoenzymes I and II. Bioorganic and Medicinal Chemistry 2015; 23 (10): 2598-2605. doi: 10.1016/j.bmc.2014.12.054
  • 18. Scozzafava A, Passaponti M, Supuran CT, Gülçin İ. Carbonic anhydrase inhibitors: guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). Journal of Enzyme Inhibition and Medicinal Chemistry 2015; 30 (4): 586-591. doi: 10.3109/14756366.2014.956310
  • 19. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature Reviews Drug Discovery 2008; 7 (2): 168-181. doi: 10.1038/nrd2467
  • 20. Akıncıoğlu A, Akıncıoğlu H, Gülçin İ, Durdağı S, Supuran CT et al. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorganic and Medicinal Chemistry 2015; 23 (13): 3592-3602. doi: 10.1016/j.bmc.2015.04.019
  • 21. Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chemical Reviews 2012; 112 (8): 4421- 4468. doi: 10.1021/cr200176r
  • 22. Özgeriş B, Göksu S, Polat Köse L, Gülçin İ, Salmas RE et al. Acetylcholinesterase and carbonic anhydrase inhibitory properties of novel urea and sulfamide derivatives incorporating dopaminergic 2-aminotetralin scaffolds. Bioorganic and Medicinal Chemistry 2016; 24 (10): 2318-2329. doi: 10.1016/j.bmc.2016.04.002
  • 23. Sujayev A, Taslimi P, Kaya R, Safarov B, Aliyeva L et al. Synthesis, characterization and biological evaluation of N -substituted triazinane-2-thiones and theoretical-experimental mechanism of condensation reaction. Applied Organometallic Chemistry 2020; 34 (2): e5329. doi: 10.1002/aoc.5329
  • 24. Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? Journal of Enzyme Inhibition and Medicinal Chemistry 2016; 31 (3): 345 doi: 10.3109/14756366.2015.1122001
  • 25. Innocenti A, Gülçin İ, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Antioxidant polyphenol natural products effectively inhibit mammalian isoforms I–XV. Bioorganic and Medicinal Chemistry Letters 2010; 20 (18): 5050-5053. doi: 10.1016/j.bmcl.2010.07.038
  • 26. Gülçin İ, Beydemir S. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. MiniReviews in Medicinal Chemistry 2013; 13 (3): 408-430. doi: 10.2174/1389557511313030009
  • 27. Öztürk Sarıkaya SB, Topal F, Şentürk M, Gülçin İ, Supuran CT. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorganic and Medicinal Chemistry Letters 2011; 21 (14): 4259-4262. doi: 10.1016/j.bmcl.2011.05.071
  • 28. Reddy MVR, Pallela VR, Cosenza SC, Mallireddigari MR, Patti R et al. Design, synthesis and evaluation of (E)- alpha-benzylthio chalcones as novel inhibitors of BCR-ABL kinase. Bioorganic and Medicinal Chemistry 2010; 18 (6): 2317-2326. doi: 10.1016/j.bmc.2010.01.051
  • 29. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 1961; 7 (2): 88-95. doi: 10.1016/0006-2952(61)90145-9
  • 30. Ozgun DO, Yamali C, Gul HI, Taslimi P, Gulcin I et al. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. Journal of Enzyme Inhibition and Medicinal Chemistry 2016; 31 (6): 1498-1501. doi: 10.3109/14756366.2016.1149479
  • 31. Ozgun DO, Gul HI, Yamali C, Sakagami H, Gulcin I et al. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorganic Chemistry 2019; 84: 511-517. doi: 10.1016/j.bioorg.2018.12.028
  • 32. Yamali C, Gul HI, Ece A, Taslimi P, Gulcin I. Synthesis, molecular modeling, and biological evaluation of 4- [5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H -pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chemical Biology and Drug Design 2018; 91 (4): 854-866. doi: 10.1111/cbdd.13149
  • 33. Lineweaver H, Burk D. The Determination of enzyme dissociation constants. Journal of the American Chemical Society 1934; 56 (3): 658-666. doi: 10.1021/ja01318a036
  • 34. Kocyigit UM, Budak Y, Gürdere MB, Tekin Ş, Köprülü TK et al. Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)- 3a,4,7,7a-tetrahydro-1H -4,7-methanoisoindole-1,3(2H)-dione derivatives. Bioorganic Chemistry 2017; 70: 118-125. doi: 10.1016/j.bioorg.2016.12.001
  • 35. Taslimi P, Sujayev A, Mamedova S, Kalin P, Gulçin İ et al. Synthesis and bioactivity of several new hetaryl sulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry 2017; 32 (1): 137-145. doi: 10.1080/14756366.2016.1238367
  • 36. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976; 72: 248-254. doi: 10.1016/0003-2697(76)90527-3
  • 37. Verpoorte JA, Mehta S, Edsall JT. Esterase activities of human carbonic anhydrases B and C. The Journal of Biological Chemistry 1967; 242 (18): 4221-4229.
  • 38. Sentürk M, Gülçin I, Daştan A, Küfrevioğlu OI, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorganic and Medicinal Chemistry 2009; 17 (8): 3207-3211. doi: 10.1016/j.bmc.2009.01.067
  • 39. Akıncıoğlu A, Akbaba Y, Göçer H, Göksu S, Gülçin İ et al. Novel sulfamides as potential carbonic anhydrase isoenzymes inhibitors. Bioorganic and Medicinal Chemistry 2013; 21 (6): 1379-1385. doi: 10.1016/j.bmc.2013.01.019
  • 40. Aksu K, Nar M, Tanç M, Vullo D, Gülçin İ et al. Synthesis and carbonic anhydrase inhibitory properties of sulfamides structurally related to dopamine. Bioorganic and Medicinal Chemistry 2013; 21 (11): 2925-2931. doi: 10.1016/j.bmc.2013.03.077
  • 41. Güney M, Coşkun A, Topal F, Daştan A, Gülçin İ et al. Oxidation of cyanobenzocycloheptatrienes: Synthesis, photooxygenation reaction and carbonic anhydrase isoenzymes inhibition properties of some new benzotropone derivatives. Bioorganic and Medicinal Chemistry 2014; 22 (13): 3537-3543. doi: 10.1016/j.bmc.2014.04.007
  • 42. Pradaux-Caggiano F, Su XD, Vicker N, Thomas MP, Smithen D et al. Synthesis and evaluation of thiadiazole derivatives as inhibitors of 11 β -hydroxysteroid dehydrogenase type 1. Medicinal Chemistry Communications 2012; 3 (9): 1117-1124. doi: 10.1039/C2MD20091K
  • 43. Li JC, Zhang J, Rodrigues MC, Ding DJ, Longo JP et al. Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity. Bioorganic and Medicinal Chemistry Letters 2016; 26 (16): 3881-3895. doi: 10.1016/j.bmcl.2016.07.017