Selective adsorption of acidic gases from ternary mixture by acetate- and sulfonate-based ionic liquids at molecular level

Selective adsorption of acidic gases from ternary mixture by acetate- and sulfonate-based ionic liquids at molecular level

This paper attempts to elucidate the competitive adsorption mechanism of thin films of ionic liquids (ILs) on the surface of porous materials for acidic gases at a molecular level in order to design a proper material for the diminishment of gas emissions. Thin film 1-butyl-3-methylimidazalium ([BMIM]+) cation-based IL systems composed of four different anions such as $[CH_3 CO_2 ]- and [CF_3 CO_2 ]-$(acetate-based), and $[CH_3 SO_3 ]- and [CF_3 SO_3 ]-$ (sulfonate-based) are created in contact with the gas phase containing ternary $H_2 S/CO_2 /CH_4$ :1/25/74 mixture. To define gas adsorption performance at gas–liquid interface and bulk liquid phase, classical molecular dynamics simulations are carried out. Adsorption of acidic gases is governed by the formation of an adsorbed gas layer on the surface of the ionic liquid based on thermodynamics aspects, and then the partial dissolution of gases in the bulk liquid phase is accompanied by the transport of gases. These behaviors are followed by several analysis methods in simulation approaches such as radial distribution function (RDF) of gases around specific atoms of ILs, lateral displacement of gas molecules, radial distance between gas and ILs, interaction energy between gases and ILs, and average number of hydrogen bonding between ions with and without adsorbed gases. Acetate-based ILs performed twice as good in $CO_2$ adsorption capacity than sulfonate-based ILs. However, the one having $–CF_3$ group in acetate-based ILs has short CO2 retention time and high $CO_4$ adsorption capacity, diminishing the $H_2 S+CO2_ /CH_4$ adsorption selectivity. High $CO_2$ adsorption performance of acetate-based ILs is related to their strong anion–cation interaction and less hydrogenbonding ability between cation tail and anion, which is the source for free space between anion and cation. Those with high adsorption capacities and long retention times are those that can ensure that $CO_2$ molecules are coordinated in these free volumes between cation tails and anions. Therefore, here, the effect of different parameters on the $CO_2 and H_2$ S adsorption over $CO_4$ is revealed via atomistic design, and the importance of selection of suitable anions in IL for identifying potential nanocomposite adsorbent materials for acidic gas removal is highlighted.

___

  • 1. Hoegh-Guldberg O, Jacob D, Taylor M. IPCC special report. Volume 3: Global warming of 1.5°C on natural and human systems; 2018.
  • 2. Bauer F, Persson T, Hulteberg C, Tamm D. Biogas upgrading-technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefin 2013; 7: 499-511. doi: 10.1002/bbb.1423
  • 3. Costa Gomes M, Pison L, Červinka C, Padua A. Porous ionic liquids or liquid metal–organic frameworks? Angewandte Chemie International Edition 2018; 130 (37): 12085-12088. doi: 10.1002/anie.201805495
  • 4. O’Reilly N, Giri N, James SL. Porous liquids. Chemistry – A European Journal 2007; 13 (11): 3020-3025. doi: 10.1002/chem.200700090
  • 5. Mohamedali M, Ibrahim H, Henni A. Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture. Chemical Engineering Journal 2018; 334: 817-828. doi: 10.1016/j.cej.2017.10.104
  • 6. Mohamedali M, Henni A, Ibrahim H. Markedly improved $CO_2$ uptake using imidazolium-based ionic liquids confined into HKUST-1 frameworks. Microporous and Mesoporous Materials 2019; 284: 98-110. doi: 10.1016/j.micromeso.2019.04.004
  • 7. Shahrom MSR, Nordin AR, Wilfred CD. The improvement of activated carbon as $CO_2$ adsorbent with supported amine functionalized ionic liquids. Journal of Environmental Chemical Engineering 2019; 7 (5): 103319. doi: 10.1016/j.jece.2019.103319
  • 8. Liu F, Huang K, Jiang L. Promoted adsorption of $CO_2$ on amine‐impregnated adsorbents by functionalized ionic liquids. AIChE Journal 2018; 64 (10): 3671-3680. doi: 10.1002/aic.16333
  • 9. Mallakpour S, Dinari M. Ionic liquids as green solvents: Progress and prospects. In Green solvents II, Springer: 2012; 1-32.
  • 10. Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green processing using ionic liquids and $CO_2$ . Nature 1999; 399 (6731): 28-29. doi: 10.1038/19887
  • 11. Aki SN, Mellein BR, Saurer EM, Brennecke JF. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. Journal of Physical Chemistry B 2004; 108 (52): 20355-20365. doi: 10.1021/jp046895+
  • 12. Shin E-K, Lee B-C. High-pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate. Journal of Chemical and Engineering Data 2008; 53 (12): 2728-2734. doi: 10.1021/je8000443
  • 13. Bara JE, Camper DE, Gin DL, Noble RD. Room-temperature ionic liquids and composite materials: platform technologies for $CO_2$ capture. Accounts of Chemical Research 2010; 43 (1): 152-159. doi: 10.1021/ar9001747
  • 14. Huang X, Margulis CJ, Li Y, Berne BJ. Why is the partial molar volume of $CO_2$ so small when dissolved in a room temperature ionic liquid? Structure and dynamics of $CO_2$ dissolved in [Bmim][PF6]. Journal of the American Chemical Society 2005; 127 (50): 17842-17851. doi: 10.1021/ja055315z
  • 15. Zhang X, Huo F, Liu Z, Wang W, Shi W et al. Absorption of $CO_2$ in the ionic liquid 1-n-hexyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate ([HMIM][FEP]): A molecular view by computer simulations. Journal of Physical Chemistry B 2009; 113 (21): 7591- 7598. doi: 10.1021/jp900403q
  • 16. Varma N R, Ramalingam A, Banerjee T. Experiments, correlations and COSMO-RS predictions for the extraction of benzothiophene from n-hexane using imidazolium-based ionic liquids. Chemical Engineering Journal 2011; 166 (1): 30-39. doi: 10.1016/j.cej.2010.09.015
  • 17. Shiflett M B, Yokozeki A. Phase behavior of carbon dioxide in ionic liquids: [EMIM][Acetate], [EMIM][Trifluoroacetate], and [EMIM] [Acetate] + [EMIM] [Trifluoroacetate] mixtures. Journal of Chemical and Engineering Data 2009; 54 (1): 108-114. doi: 10.1021/je800701j
  • 18. Yokozeki A, Shiflett MB, Junk CP, Grieco LM, Foo T. Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. The Journal of Physical Chemistry B 2008; 112 (51): 16654-16663. doi: 10.1021/jp805784u
  • 19. Gómez-Coma L, Garea A, Irabien A. Non-dispersive absorption of $CO_2$ in [EMIM][EtSO4] and [EMIM][Ac]: Temperature influence. Separation and Purification Technology 2014; 132: 120-125. doi: 10.1016/j.seppur.2014.05.012
  • 20. Mejía I, Stanley K, Canales R, Brennecke JF. On the high-pressure solubilities of carbon dioxide in several ionic liquids. Journal of Chemical and Engineering Data 2013; 58 (9): 2642-2653. doi: 10.1021/je400542b
  • 21. Zhang S, Chen Y, Ren R X-F, Zhang Y, Zhang J et al. Solubility of $CO_2$ in sulfonate ionic liquids at high pressure. Journal of Chemical and Engineering Data 2005; 50 (1): 230-233. doi: 10.1021/je0497193
  • 22. Shiflett MB, Niehaus AMS, Yokozeki A. Separation of $CO_2$ and H2S using room-temperature ionic liquid [BMIM][MeSO4]. Journal of Chemical and Engineering Data 2010; 55 (11): 4785-4793. doi: 10.1021/je1004005
  • 23. Ahmad MZ, Peters TA, Konnertz NM, Visser T, Téllez C et al. High-pressure $CO_2/CH_4$ separation of Zr-MOFs based mixed matrix membranes. Separation and Purification Technology 2020; 230: 115858. doi: 10.1016/j.seppur.2019.115858
  • 24. Liu L, Nicholson D, Bhatia SK. Adsorption of $CH_4 and CH_4/CO_2$ mixtures in carbon nanotubes and disordered carbons: A molecular simulation study. Chemical Engineering Science 2015; 121: 268-278. doi: 10.1016/j.ces.2014.07.041
  • 25. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics 1995; 117 (1): 1-19. doi: 10.1006/jcph.1995.1039
  • 26. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996; 14 (1): 33-38. doi: 10.1016/0263-7855(96)00018-5
  • 27. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B 2001; 105 (28): 6474-6487. doi: 10.1021/jp003919d
  • 28. Canongia Lopes JN, Deschamps J, Pádua AA. Modeling ionic liquids using a systematic all-atom force field. The Journal of Physical Chemistry B 2004; 108 (6): 2038-2047. doi: 10.1021/jp0362133
  • 29. Canongia Lopes JN, Pádua AA. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. The Journal of Physical Chemistry B 2004; 108 (43): 16893-16898. doi: 10.1021/jp0476545
  • 30. Potoff JJ, Siepmann JI. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. Aiche J 2001; 47 (7): 1676- 1682.
  • 31. Nath SK. Molecular simulation of vapor-liquid phase equilibria of hydrogen sulfide and its mixtures with alkanes. The Journal of Physical Chemistry B 2003; 107 (35): 9498-9504. doi: 10.1021/jp034140h
  • 32. Martin MG, Siepmann JI. Transferable Potentials For Phase Equilibria. 1. United-Atom Description of N-Alkanes. The Journal of Physical Chemistry B 1998; 102 (14): 2569-2577.
  • 33. Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry 2009; 30 (13): 2157-2164. doi: 10.1002/jcc.21224
  • 34. Doherty B, Zhong X, Gathiaka S, Li B, Acevedo O. Revisiting OPLS force field parameters for ionic liquid simulations. Journal of Chemical Theory and Computation 2017; 13 (12): 6131-6145. doi: 10.1021/acs.jctc.7b00520
  • 35. Aghaie M, Rezaei N, Zendehboudi S. New insights into bulk and interface properties of [Bmim][Ac]/[Bmim]$[BF_4]$ ionic liquid/$CO_2$ systems-Molecular dynamics simulation approach. Journal of Molecular Liquids 2020; 317: 113497. doi: 10.1016/j.molliq.2020.113497
  • 36. Thomas A, Ahamed R, Prakash M. Selection of a suitable ZIF-8/ionic liquid (IL) based composite for selective CO2 capture: The role of anions at the interface. RSC Advances 2020; 10 (64): 39160-39170. doi: 10.1039/d0ra07927h
  • 37. Klahn M, Seduraman A. What determines $CO_2$ solubility in ionic liquids? A molecular simulation study. The Journal of Physical Chemistry B 2015; 119 (31): 10066-10078. doi: 10.1021/acs.jpcb.5b03674
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Capillary zone electrophoresis as a quality assessment tool of paracetamol and phenylephrine hydrochloride in presence of paracetamol impurities

Joliana F. FARID, Nadia M. MOSTAFA, Yasmin M. FAYEZ, Hebatallah M. ESSAM

The study of Fe3 O4 @SiO2 -NH2 nano-magnetic composite modified by glutaraldehyde to immobilized penicillin G acylase

Monier Alhadi Abdelrahman MOHAMMED, henbin CHEN, Ke LI, Boyuan ZHANG

Phytochemical composition and pharmacological activities of Teucrium polium L. collected from eastern Turkey

Fatih GÖGER, Gökalp İŞCAN, Mine KÜRKÇÜOĞLU, Ayşe CİVAŞ, K. Hüsnü Can BAŞER, Turgut TAŞKIN, Gülay ECEVİT GENÇ, Afife MAT, Gizem GÜLSOY TOPLAN

Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin

Adalet TUNÇELİ, Abdullah ULAŞ, Orhan ACAR, Ali Rehber TÜRKER

Investigation of antibacterial and photocatalytic efficiency of green ZnO nanoparticles that synthesized with Celosia Cristata flower extract

Özgür DUYGULU, Mahmure ÜSTÜN ÖZGÜR, Melda ALTIKATOĞLU YAPAÖZ

Virtual screening, drug-likeness analysis, and molecular docking study of potential severe acute respiratory syndrome coronavirus 2 main protease inhibitors

Nikola V. NEDELJKOVIĆ, Miloš V. NIKOLIĆ, Ana S. STANKOVIĆ, Nevena S. JEREMIĆ, Dušan Lj. TOMOVIĆ, Andriana M. BUKONJIĆ, Gordana P. RADIĆ, Marina Ž. MIJAJLOVIĆ

Selective adsorption of acidic gases from ternary mixture by acetate- and sulfonate-based ionic liquids at molecular level

Sadiye VELİOĞLU

Recycled human hair-derived activated carbon for energy-related applications

Oğuzhan KOTAN, Hatice BAYRAKÇEKEN

Synthesis of modified nanocomposite material and its use on removal of cesium from aqueous media

Bilal ÇETİN, Bektaş KARAKELLE, Mustafa ÖZCAN

Supramolecular solvent-based microextraction for the preconcentration of $Pb^{2+} and Cd2^{+}$ prior to spectrophotometric detection

Rafaqat Ali KHAN, Bushra ISMAIL, Asad Muhammad KHAN, Huma ZAFAR, Jan NISAR, Faheem SHAH