Solar light degradation of organic dye pollutants and preparation of bis(indolyl) methanes using core-shell $Fe_3 O_4 @SiO_2 @CuO$ nanocomposite

Solar light degradation of organic dye pollutants and preparation of bis(indolyl) methanes using core-shell $Fe_3 O_4 @SiO_2 @CuO$ nanocomposite

In this research, a new ferromagnetic-recoverable core-shell $Fe_3 O_4 @SiO_2 @CuO$ nanocomposite of a certain size (20–25 nm) has been synthesized based on Cu(II) complex coated on $Fe_3 O_4 @SiO_2$ nanoparticles by facile and fast solid state microwave irradiation method. The photocatalytic activity of the nanocomposite was investigated for degradation of methylene blue (MB) and methyl orange (MO) dye pollutants in aqueous media under solar light irradiation. The nanocomposite could destroy these dyes with high efficiency in short time. With comparison of degradation percentages can be concluded that the nanocomposite shows better photocatalytic activity for MB dye (97% in 180 s). Kinetic study revealed higher rate constant for degradation of MB $(k= 3.6×^{10–}3 s^{–1})$ with pseudozero-order model. Also, $Fe_3 O_4 @SiO_2$ @CuO nanocomposite was an efficient magnetically recoverable catalyst for the preparation of bis(indolyl) methanes (BIMs) through the condensation of an aldehyde with 2 equivalents of indole in EtOH/H2 O as green solvents.

___

  • 1. Li W, Mu B, Yang Y. Feasibility of industrial-scale treatment of dye waste water via bio-adsorption technology. Bioresource Technology 2019; 277: 157–170. doi: 10.1016/j.biortech.2019.01.002
  • 2. Jiang X, Xia H, Zhang L, Peng J, Cheng S et al. Ultrasound and microwave-assisted synthesis of copper-activated carbon and application to organic dyes removal. Powder Technology 2018; 338: 857–868. doi: 10.1016/j.powtec.2018.07.089
  • 3. Molla A, Li Y, Mandal B, Kang SG, Hur SH et al. Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Applied Surface Science 2019; 464: 170–177. doi: 10.1016/j.apsusc.2018.09.056
  • 4. Hu H, Lin Y, Hu YH. Core-shell structured $TiO_2$ as highly efficient visible light photocatalyst for dye degradation. Catalysis Today 2020; 341: 90–95. doi: 10.1016/j.cattod.2019.01.077
  • 5. Wang P, Qi C, Hao L, Wen P, Xu X. Sepiolite/$Cu_2O/Cu$ photocatalyst: preparation and high performance for degradation of organic dye. Journal of Materials Science & Technology 2019; 35 (3): 285–291. doi: 10.1016/j.jmst.2018.03.023
  • 6. Boikanyo D, Masheane ML, Nthunya LN, Mishra SB, Mhlanga SD. Carbon-supported photocatalysts for organic dye photodegradation. In: Mustansar Hussain C, Kumar Mishra A (editors). New Polymer Nanocomposites for Environmental Remediation. New York: Elsevier BV, 2018, pp. 99–138. doi: 10.1016/B978-0-12-811033-1.00005-6
  • 7. Kisała J, Hęclik K, Masłowska A, Celuch M, Pogocki D. Natural environments for nanoparticles synthesis of metal, metal oxides, core– shell and bimetallic systems. In: Rahman AU (editor). Studies in Natural Products Chemistry. New York: Elsevier BV, 2017, vol. 52, pp. 1–67. doi: 10.1016/B978-0-444-63931-8.00001-1
  • 8. Chen W, Yan RQ, Chen GH, Chen MY, Huang GB et al. Hydrothermal route to synthesize helical $CdS@ZnIn_2 S_4$ core-shell heterostructures with enhanced photocatalytic hydrogeneration activity. Ceramics International 2019; 45 (2): 1803–1811. doi: 10.1016/j.ceramint.2018.10.067
  • 9. Wu Q, Li M, Huang Z, Shao Y, Bai L et al. Well-defined nanostructured core–shell magnetic surface imprinted polymers $(Fe_3O_4@SiO_2@MIPs)$ for effective extraction of trace tetrabromobisphenol A from water. Journal of Industrial and Engineering Chemistry 2018; 60: 268–278. doi: 10.1016/j.jiec.2017.11.013
  • 10. Rajkumar S, Prabaharan M. Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy. Colloids and SurfacesB: Biointerfaces 2019; 174:, 252–259. doi: 10.1016/j.colsurfb.2018.11.004
  • 11. Esmaeilpour M, Sardarian AR, Firouzabadi H. Dendrimer-encapsulated Cu(II) nanoparticles immobilized on superparamagnetic$Fe_3O_4@SiO_2$ nanoparticles as a novel recyclable catalyst for N-arylation of nitrogen heterocycles and green synthesis of 5-substituted 1H-tetrazoles). Applied Organometallic Chemistry 2018; 32 (4): e4300–e4316. doi: 10.1002/aoc.4300
  • 12. Ghasemzadeh MA. Synthesis and characterization of $Fe_3O_4@SiO_2$ NPs as an effective catalyst for the synthesis of tetrahydrobenzo[a] xanthen-11-ones. Acta Chimica Slovenica 2015; 62 (4): 977–985. doi: 10.17344/acsi.2015.1501
  • 13. Shiri M, ZolFigol MA, Kruger HG, Tanbakouchian Z. Bis- and trisindolylmethanes (BIMs and TIMs). Chemical Reviews 2010; 110 (4): 2250–2293. doi: 10.1021/cr900195a
  • 14. Sujatha K, Perumal PT, Muralidharan D, Rajendran M. Synthesis and anti-microbial activity of pyrazolylbisindoles promising anti-fungal compounds. Indian Journal of Chemistry 2009; 48B (2): 267–272. http://hdl.handle.net/123456789/3432
  • 15. Pratim Kaishap P, Dohutia C, Chetia D. Synthesis and study of analgesis, anti-inflammatory activities of bis(indolyl) methanes (BIMs). International Journal of Pharmaceutical Sciences and Research 2012; 3 (11): 4247–4253. doi: 10.13040/IJPSR.0975-8232.3(11).4247-53
  • 16. Inamoto T, Papineni S, Chintharlapalli S, Cho SD, Safe S et al. 1,1-Bis(3`-indolyl)-1-(p-chlorophenyl)methane activates the orphan nuclear receptor Nurr1 and inhibits bladder cancer growth. Molecular Cancer Therapeutics 2008; 7 (12): 3825–3833. doi: 10.1158/1535- 7163.MCT-08-0730
  • 17. Lee CH, Yao CF, Huang SM, Ko S, Tan YH et al. Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models. Cancer 2008; 113 (4): 815–825. doi: 10.1002/cncr.23619
  • 18. Bedekovic D, Fletcher IJ. Recording material containing chromogenic 3,3-bisindolyl-4-azaphthalides. US patent 4,705,776, 1987. 19. Gresens E, Ni Y, Adriaens P, Verbruggen A, Marchal G. Room temperature stable competent cells. US patent 0053911A1, 2004.
  • 20. Babu G, Sridhar N, Perumal PT. A convenient method of synthesis of bis-indolylmethanes:indium trichloride catalyzed reactions of indole with aldehydes and Schiff`s bases. Synthetic Communications 2000; 30 (9): 1609–1614. doi: 10.1080/00397910008087197
  • 21. Yadav JS, Subba Reddy BV, Basi V, Murthy ChVSR, Mahesh Kumar G et al. Lithium perchlorate catalyzed reactions of indoles: an expeditious synthesis of bis(indolyl)methanes. Synthesis 2001; 5: 783–787. doi: 10.1055/s-2001-12777
  • 22. Ji SJ, Wang SY, Zhang Y, Loh TP. Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions. Tetrahedron 2004; 60 (9): 2051–2055. doi: 10.1016/j.tet.2003.12.060 23. Li-Tao A, Fei-Qing D, Jian-Ping Z, Xiao-Hua L, Li-Li Z. An efficient and solvent-free reaction for synthesis of bis(indol-3-yl)methanes catalyzed by sulfamic acid. Chinese Journal of Chemistry 2007; 25 (6): 822–827. doi: 10.1002/cjoc.200790151
  • 24. Bandgar BP, Patil AV, Kamble VT. Fluoroboric acid adsorbed on silica gel catalyzed synthesis of bisindolyl alkanes under mild and solventfree conditions. Arkivoc 2007; xvi: 252–259. doi: 10.3998/ark.5550190.0008.g25
  • 25. Sheng SR, Wang QY, Ding Y, Liu XL, Cai MZ. Synthesis of bis(indolyl)methanes using recyclable PEG-supported sulfonic acid as catalyst. Catalysis Letters 2009; 128: 418–422. doi: 10.1007/s10562-008-9767-z
  • 26. Parvanak Boroujeni K, Asadi F, Kazemi R. Fadavi A. Carbon nanotubes grafted with sulfonated polyacrylamide as a heterogeneous catalyst for the preparation of bis(indolyl)methanes. Journal of Nanoparticle Research 2019; 21: 151–163. doi: 10.1007/s11051-019-4543-0
  • 27. Parvanak Boroujeni K, Parvanak K. Efficient and solvent-free synthesis of bis-indolylmethanes using silica gel supported aluminium chloride as a reusable catalyst. Chinese Chemical Letter 2011; 22 (8): 939–942. doi: 10.1016/j.cclet.2011.01.039
  • 28. Kidwai M, Chauhan R, Bhatnagar D. Nafion-H® catalyzed efficient condensation of indoles with aromatic aldehydes in PEG-water solvent system: a green approach. Arabian Journal of Chemistry 2016; 9: S2004–S2010. doi: 10.1016/j.arabjc.2014.05.009
  • 29. Tong J, Yang CH, Xu DZ. Ionic liquid $[DABCO-H][HSO_4]$ as a highly efficient and recyclable catalyst for friedel-crafts alkylation in the synthesis of bis(naphthol)methane and bis(indolyl)methane derivatives. Synthesis 2016; 48 (20): 3559–3566. doi: 10.1055/s-0035-1561655
  • 30. Sobhani S, Jahanshahi R, Nano n-propylsulfonated $γ-Fe_2O_3 (NPS-γ-Fe_2O_3)$ as a magnetically recyclable heterogeneous catalyst for the efficient synthesis of 2-indolyl-1-nitroalkanes and bis(indolyl)methanes. New Journal of Chemistry 2013; 37: 1009–1015. doi: 10.1039/ C3NJ40899J
  • 31. Mohapatra SS, Wilson ZE, Roy S, Ley SV. Utilization of flow chemistry in catalysis: new avenues for the selective synthesis of bis(indolyl) methanes. Tetrahedron 2017; 73 (14): 1812–1819. doi: 10.1016/j.tet.2017.02.026
  • 32. Tocco G, Zedda G, Casu M, Simbula G, Begala M. Solvent-free addition of indole to aldehydes: unexpected synthesis of novel 1-[1-(1H-indol-3-yl)alkyl]-1H-indoles and preliminary evaluation of their cytotoxicity in hepatocarcinoma cells. Molecules 2017; 22 (10): 1747–1757. doi: 10.3390/molecules22101747
  • 33. Wang Y, Sang R, Zheng Y, Guo L, Guan M et al. Graphene oxide: an efficient recyclable solid acid for the synthesis of bis(indolyl)methanes from aldehydes and indoles in water. Catalysis Communications 2017; 89: 138–142. doi: 10.1016/j.catcom.2016.09.027
  • 34. Chatterjee R, Mahato S, Santra S, Zyryanov GV, Hajra A et al. Imidazolium Zwitterionic molten salt: an efficient organocatalyst under neat conditions at room temperature for the synthesis of dipyrromethanes as well as bis(indolyl)methanes. ChemistrySelect 2018; 3 (14): 5843–5847. doi: 10.1002/slct.201800227
  • 35. Kalla RMN, Hong SC, Kim I. Synthesis of bis(indolyl)methanes using hyper-cross-linked polyaromatic spheres decorated with bromomethyl groups as efficient and recyclable catalysts. ACS Omega 2018; 3 (2): 2242–2253. doi: 10.1021/acsomega.7b01925
  • 36. Kasar SB, Thopate SR. Synthesis of bis(indolyl)methanes using naturally occurring, biodegradable itaconic acid as a green and reusable catalyst. Current Organic Synthesis 2018; 15 (1): 110–115. doi: 10.2174/1570179414666170621080701
  • 37. Matzkeit YH, Tornquist BL, Manarin F, Botteselle GV, Rafique J et al. Borophosphate glasses: Synthesis, characterization and application as catalyst for bis(indolyl)methanes synthesis under greener conditions. Journal of Non-Crystalline Solids 2018; 498: 153–159. doi: 10.1016/j. jnoncrysol.2018.06.020
  • 38. Radfar I, Miraki MK, Ghandi L, Esfandiary N, Abbasi S et al. $BF_3-grafted Fe_3O_4 @$sucrose nanoparticles as a highly efficient acid catalyst for syntheses of dihydroquinazolinones (DHQZs) and bis 3-indolyl methanes (BIMs). Applied Organometallic Chemistry 2018; 32 (1): e4431–e4441. doi: 10.1002/aoc.4431
  • 39. Tohidiyan Z, Hashemi S, Parvanak Boroujeni K. Facile microwave-assisted synthesis of NiO nanoparticles and its effect on soybean (glycine max). IET Nanobiotechnology 2019; 13 (2): 101–106. doi: 10.1049/iet-nbt.2018.5003
  • 40. Parvanak Boroujeni K, Tohidiyan Z, Lorigooini Z, Hamidifar Z, Eskandari MM. Co–Sn–Cu oxides/graphene nanocomposites as green catalysts for preparing 1,8-dioxo-octahydroxanthenes and apoptosis-inducing agents in MCF-7 human breast cancer cells. IET Nanobiotechnology 2021; 15 (2): 197–211. doi: 10.1049/nbt2.12006
  • 41. Saei Dehkordi SS, Albadi J, Jafari AA, Samimi HA. Catalytic study of the copper-based magnetic nanocatalyst on the aerobic oxidation of alcohols in water. Research on Chemical Intermediates 2021; 47: 2527–2538. doi: 10.1007/s11164-021-04422-w
  • 42. Parvanak Boroujeni K, Tohidiyan Z, Shahsanaei H, Lorigooini Z, Fadavid A. Silver and palladium nanoparticles anchored to the coreshell $Fe_3O_4@SiO_2@Al_2O_3$ for catalytic aerobic oxidation of alcohols and apoptotic induction on MCF-7 cells. Inorganic Chemistry Communications 2020; 122: 108206. doi: 10.1016/j.inoche.2020.108206
  • 43. Fathirad F, Mostafavi A, Afzali D. Conductive polymeric ionic liquid/$Fe_3O_4$ nanocomposite as an efficient catalyst for the voltammetric determination of amlodipine besylate. Journal of AOAC INTERNATIONAL 2017; 100 (2): 406–413. doi: 10.5740/jaoacint.16-0216
  • 44. Ebrahimipour SY, Sheikhshoaie I, Castro J, Dŭsek M, Tohidiyan Z et al. Synthesis, spectral characterization, structural studies, molecular docking and antimicrobial evaluation of new dioxidouranium (VI) complexes incorporating tetradentate N2O2 Schiff base ligands. RSC Advances 2015; 5 (115): 95104–95117. doi: 10.1039/C5RA17524K
  • 45. Tohidiyan Z, Sheikhshoaie I, Khaleghi M, Mague JT. A novel copper (II) complex containing a tetradentate Schiff base: synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide. Journal of Molecular Structure 2017; 1134: 706–714. doi: 10.1016/j.molstruc.2017.01.026
  • 46. Farhadi S, Roostaei-Zaniyani Z. Simple and low-temperature synthesis of NiO nanoparticles through solid-state thermal decomposition of the hexa(ammine)Ni(II) nitrate, $[Ni(NH_3)_6](NO_3)_2$ , complex. Polyhedron 2011; 30: 1244–1249. doi: 10.1016/j.poly.2011.01.028
  • 47. Farhadi S, Amini MM, Mahmoudi F. Phosphotungstic acid supported on aminosilica functionalized perovskite-type $LaFeO_3$ nanoparticles: a novel recyclable and excellent visible-light photocatalyst. RSC Advances 2016; 6 (105): 102984–102996. doi: 10.1039/C6RA24627C
  • 48. Adel AA, Azza E, Abou-Hussein AA. Spectroscopic studies of bimetallic complexes derived from tridentateor tetradentate Schiff bases of some di-and tri-valent transition metals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2006; 64 (4): 1010–1024. doi: 10.1016/j.saa.2005.09.010
  • 49. Wang J, Yang J, Li X, Wei B, Wang D et al. Synthesis of $Fe_3O_4@SiO_2 @ZnO-Ag$ core-shell microspheres for the repeated photocatalytic degradation of rhodamine B under UV irradiation. Journal of Molecular Catalysis A: Chemical 2015; 406: 97–105. doi: 10.1016/j. molcata.2015.05.023
  • 50. Klug HP, Alexander LE. X-ray Diffraction Procedures. 2nd ed., New York: Wiley, 1964.
  • 51. Rahdar A, Nanomedicine Research Journal Aliahmad M, Azizi Y, Keikha N, Moudi M et al. CuO-NiO Nano composites: synthesis, characterization, and cytotoxicity evaluation. 2017; 2 (2), 78–86. doi: 10.22034/NMRJ.2017.56956.1057
  • 52. Fernando Back D, Manzonide Oliveira G, Andre Fontana L, Fiorin Ramao B, Roman D et al. One-pot synthesis, structural characterization, UV–Vis and electrochemical analyses of new Schiff base complexes of Fe(III), Ni(II) and Cu(II). Journal of Molecular Structure 2015; 1100: 264–271. doi: 10.1016/j.molstruc.2015.07.050
  • 53. Tohidiyan Z, Sheikhshoaie I. Sonochemical, spectroscopic study and antibacterial activity of two uranyl Schiff base complexes in nano scale. Rendiconti Lincei 2017; 28: 405–413. doi: 10.1007/s12210-017-0608-0
  • 54. Gupta D, Meher SR, Illyaskutty N, Alex ZC. Facile synthesis of $Cu_2$ O and CuO nanoparticles and study of their structural, optical and electronic properties. Journal of Alloys and Compounds 2018; 743: 737–745. doi: 10.1016/j.jallcom.2018.01.181
  • 55. Kiziltaş H, Tekin T, Tekin D. Synthesis, characterization of Fe3O4@SiO2 @ZnO composite with a core-shell structure and evaluation of its photocatalytic activity. Journal of Environmental Chemical Engineering 2020; 8 (5): 104160. doi: 10.1016/j.jece.2020.104160
  • 56. Chen Y, Zhang L, Zhang H, Zhong K, Zhao G et al. Band gap manipulation and physical properties of preferred orientation CuO thin films with nano wheatear array. Ceramics International 2018; 44 (1): 1134–1141. doi: 10.1016/j.ceramint.2017.10.070
  • 57. Talluri B, Prasa E, Thomas T. Ultra-small (r<2 nm), stable (>1 year) copper oxide quantum dots with wide band gap. Superlattices and Microstructures 2018; 113: 600–607. doi: 10.1016/j.spmi.2017.11.044
  • 58. Banat F, Al-Asheh S, Al-Rawashdeh M. Photodegradation of methylene blue dye by the $UV/H_2 O_2$ and UV/acetone oxidation processes. Desalination 2005; 181 (1–3): 228–232. doi: 10.1016/j.desal.2005.04.005
  • 59. Xia Sh, Zhang L, Pan G, Qian P, Ni Z. Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways. Physical Chemistry Chemical Physics 2015; 17 (7): 5345–5351. doi: 10.1039/C4CP03877K
  • 60. Kumar B, Smita K, Cumbal L, Debut A, Galeas S, Guerrero VH et al. Phytosynthesis and photocatalytic activity of magnetite$(Fe_3O_4)$ nanoparticles using the Andean blackberry leaf. Materials Chemistry and Physics 2016; 179: 310–315. doi: 10.1016/j. matchemphys.2016.05.045
  • 61. Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F et al. Synthesis and characterization of metal oxides $(CeO_2, CuO,NiO, Mn_3O_4, SnO_2 and ZnO)$ nanoparticles as photo catalysts for degradation of textile dyes. Journal of Photochemistry and Photobiology B: Biology 2017; 173: 43–49. doi: 10.1016/j.jphotobiol.2017.05.027
  • 62. Ding J, Liu L, Xue J, Zhou Z, He G et al. Low-temperture preparation of magnetically separable $Fe_3 O_4@CuO-RGO$ core-shell heterojunctions for high-perfomance removal of organic dye under visible light. Journal of Alloys and Compounds 2016; 688: 649–656. doi: 10.1016/j. jallcom.2016.07.001
  • 63. Sheikhshoaie I, Ramezanpour S, Khatamian M. Synthesis and characterization of thallium doped Mn3 O4 as superior sunlight photocatalysts. Journal of Molecular Liquids 2017; 238: 248–253. doi: 10.1016/j.molliq.2017.04.088
  • 64. Dom R, Subasri R, Radha K, Borse PH. Synthesis of solar active nanocrystalline ferrite, $MFe_2 O_4 (M: Ca, Zn, Mg)$ photocatalyst by microwave irradiation. Solid State Communications 2011; 151 (6): 470–473. doi: 10.1016/j.ssc.2010.12.034
  • 65. Nirumand L, Farhadi S, Zabardasti A, Khataee A. Synthesis and sonocatalytic performance of a ternary magnetic $MIL-101(Cr)/RGO/ZnFe_2O_4$ nanocomposite for degradation of dye pollutants. Ultrasonics Sonochemistry 2018; 42: 647–658. doi: 10.1016/j. ultsonch.2017.12.033
  • 66. Huang S, Gu L, Zhu N, Feng K, Yuan H et al. Heavy metal recovery from electroplating wastewater by synthesis of mixed-$Fe_3O_4@SiO_2$/metal oxide magnetite photocatalysts. Green Chemistry 2014; 16 (5): 2696–2705. doi: 10.1039/C3GC42496K
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Adsorption isotherms, kinetic and thermodynamic studies on cadmium and lead ions from water solutions using Amberlyst 15 resin

Adalet TUNÇELİ, Abdullah ULAŞ, Orhan ACAR, Ali Rehber TÜRKER

Recycled human hair-derived activated carbon for energy-related applications

Oğuzhan KOTAN, Hatice BAYRAKÇEKEN

Investigation of antibacterial and photocatalytic efficiency of green ZnO nanoparticles that synthesized with Celosia Cristata flower extract

Özgür DUYGULU, Mahmure ÜSTÜN ÖZGÜR, Melda ALTIKATOĞLU YAPAÖZ

Solar light degradation of organic dye pollutants and preparation of bis(indolyl) methanes using core-shell $Fe_3 O_4 @SiO_2 @CuO$ nanocomposite

Mina MIRZAEI, Kaveh PARVANAK BOROUJENI, Zeinab TOHIDIYAN

Virtual screening, drug-likeness analysis, and molecular docking study of potential severe acute respiratory syndrome coronavirus 2 main protease inhibitors

Nikola V. NEDELJKOVIĆ, Miloš V. NIKOLIĆ, Ana S. STANKOVIĆ, Nevena S. JEREMIĆ, Dušan Lj. TOMOVIĆ, Andriana M. BUKONJIĆ, Gordana P. RADIĆ, Marina Ž. MIJAJLOVIĆ

Selective adsorption of acidic gases from ternary mixture by acetate- and sulfonate-based ionic liquids at molecular level

Sadiye VELİOĞLU

First determination of anticancer, cytotoxic, and in silico ADME evaluation of secondary metabolites of endemic Astragalus leucothrix Freyn & Bornm

Melda DÖLARSLAN, İbrahim DEMİRTAŞ, Duygu GÜNEŞ GÜRBÜZ, Ayşe ŞAHİN YAĞLIOĞLU

Phytochemical composition and pharmacological activities of Teucrium polium L. collected from eastern Turkey

Fatih GÖGER, Gökalp İŞCAN, Mine KÜRKÇÜOĞLU, Ayşe CİVAŞ, K. Hüsnü Can BAŞER, Turgut TAŞKIN, Gülay ECEVİT GENÇ, Afife MAT, Gizem GÜLSOY TOPLAN

Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template

Vural BÜTÜN, Gökhan KOÇAK

Supramolecular solvent-based microextraction for the preconcentration of $Pb^{2+} and Cd2^{+}$ prior to spectrophotometric detection

Rafaqat Ali KHAN, Bushra ISMAIL, Asad Muhammad KHAN, Huma ZAFAR, Jan NISAR, Faheem SHAH