First determination of anticancer, cytotoxic, and in silico ADME evaluation of secondary metabolites of endemic Astragalus leucothrix Freyn & Bornm

First determination of anticancer, cytotoxic, and in silico ADME evaluation of secondary metabolites of endemic Astragalus leucothrix Freyn & Bornm

Isolation and characterization of anticancer activity guided secondary metabolites of endemic Astragalus leucothrix Freyn& Bornm were aimed. Aerial parts of the plant were extracted by maceration method in the solvent system methanol-chloroform (1 : 1) at room temperature. The obtained crude extract was dissolved in purified water. Then, the extract was partitioned with n-hexane, chloroform, ethyl acetate, and n-butanol, respectively. Anticancer activity tests of all the fractions were performed against HeLa and C6 cancer cells. The chloroform fraction that has highest anticancer activity was subjected to chromatographic methods such as column chromatography and thin layer chromatography. Pentyl tetratetracontanoate (1), alfalone (2), 3,6,8-tribromoquinoline (3), and 3,6,8-tribromochromenium (4) molecules were detected from this plant for the first time. The structure determinations of the isolated molecules were elucidated by methods such as 1D and 2D NMR, HPLC - TOF / MS, and GC - MS analysis. Finally, anticancer and cytotoxic activity tests of the compounds were performed. Literature review showed that 3,6,8-tribromochromenium is a new compound. IC50 values of compound 1-2 and compound 3-4 mix were determined to be 4.50 ± 0.10, 2.81 ± 0.00, 4.33 ± 0.00 µM against C6 cell, respectively. The drug likeness properties of 1-4 were obtained by SwissADME. According to Lipinski’s rule of five; 2-4 could be a new potential anticancer agent.

___

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA et al. Global cancer statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 2018; 68: 394–424. doi: 10.3322/caac.21492
  • 2. Damyanov C, Maslev I, Pavlov V, Avramov L. Conventional treatment of cancer realities and problems. Annals of Complementary and Alternative Medicine 2018; 1: 1002-1011.
  • 3. Singh SP, Mishra A, Shyanti RK, Singh RP, Acharya A. Silver nanoparticles synthesized using Carica papaya leaf extract (AgNPs-PLE) causes cell cycle arrest and apoptosis in human prostate (DU145) cancer cells. Biological Trace Element Research 2021; 199: 1316–1331 doi: 10.1007/s12011-020-02255-z
  • 4. Coates A, Abraham S, Kaye SB, Sowerbutts T, Frewin C et al. On the receiving end–patient perception of the side-effects of cancer chemotherapy. European Journal of Cancer and Clinical Oncology 1983; 19: 203–208. doi: 10.1016/0277-5379(83)90418-2
  • 5. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nature Reviews Drug Discovery 2006; 5: 219–234. doi: 10.1038/nrd1984
  • 6. Karmous I, Pandey A, Haj KB, Chaoui A. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biological Trace Element Research 2020; 196: 330–342. doi: 10.1007/s12011-019-01895-0
  • 7. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences 2004; 74 (17): 2157–2184. doi: 10.1016/j.lfs.2003.09.047
  • 8. Cragg GM, Newman DJ. Plants as a source of anticancer agents. Journal of Ethnopharmacology 2005; 100 (1–2): 72-79. doi: 10.1016/j. jep.2005.05.011
  • 9. Khan F, Pandey P, Ahmad V, Upadhyay TK. Moringa oleifera methanolic leaves extract induces apoptosis and G0/G1 cell cycle arrest via down regulation of Hedgehog Signaling Pathway in human prostate PC-3 cancer cells. Journal of Food Biochemistry 2020a; 44 (8): e13338. doi: 10.1111/jfbc.13338
  • 10. Ashraf MA. Phytochemicals as potential anticancer drugs: time to ponder nature’s bounty. BioMed Research International 2020; 2020. doi: 10.1155/2020/8602879
  • 11. Omara T, Kiprop AK, Ramkat RC, Cherutoi J, Kagoya S et al. Medicinal plants used in traditional management of cancer in uganda: a review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evidence-Based Complementary and Alternative Medicine 2020; 15: 3529081. doi: 10.1155/2020/3529081
  • 12. Khan T, Ali M, Khan A, Nisar P, Jan SA et al. Anticancer plants: a review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 2020b; 10 (1): 47. doi: 10.3390/biom10010047
  • 13. Chaudhary LB, Rana TS, Anand KK. Current status of the systematics of Astragalus L. (Fabaceae) with special reference to the Himalayan Species in India. Taiwania 2008; 53: 338-355. doi: 10.6165/tai.2008.53(4).338
  • 14. Aytaç Z, Ekici M. Astragalus. In: Güner, A. et al. (Eds), Türkiye Bitkileri Listesi (Damarlı Bitkiler). Turkey: Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları, Derneği Yayını, 2012; 427-456.
  • 15. Podlech D, Zarre Sh. [with collaboration of Ekici, M., Maassoumi, A.A. & Sytin, A.]. A taxonomic revision of the genus Astragalus L. (Leguminosae) in the Old World. Vols. 1-3. Naturhistorisches Museum, Wien, 2013; 2439 pp.
  • 16. Vural M, Subaşı Ü, Ayyıldız G, Samancı İ. Ankara Province Private Geveni (Astragalus bozakmanii) Species Conservation Action Plan, Ministry of Forestry and Water Affairs General Directorate of Nature Conservation and National Parks, IX. Regional Directorate-Ankara Branch Office, 2017.
  • 17. Kocabaş YZ, İlçim A, Çömlekçioğlu N. Kahramanmaraş Başkonuş Mountain Geven (Astragalus spp.) And Its Importance, III. International Non-Wood Forest Products Symposium, 8-10 May 2014, Kahramanmaraş.
  • 18. Ibrahim LF, Marzouk MM, Hussein SR, Kawashty SA, Mahmoud K et al. Flavonoid constituents and biological screening of Astragalus bombycinus Boiss. Natural Product Research 2013; 27: 386–393. doi: 10.1080/14786419.2012.701213
  • 19. Li X, Qu L, Dong Y, Han L, Liu E et al. A review of recent research progress on the Astragalus genus. Molecules 2014; 19: 18850-18880. doi: 10.3390/molecules191118850
  • 20. Rios JL, Waterman PG. A Review of the pharmacology and toxicology of Astragalus. Phytotherapy Research 1998; 11: 411-418. doi: 10.1002/(SICI)1099-1573(199709)11:6<411::AID-PTR132>3.0.CO;2-6
  • 21. Calis I, Yuruker A, Tasdemir D, Wright AD, Sticher O et al. Cycloartane triterpene glycosides from the roots of Astragalus melanophrurius. Planta Medica 1997; 63: 183–186. doi: 10.1055/s-2006-957642
  • 22. Bedir E, Pugh N, Çalış I, Pasco DS, Khan IA. Immunostimulatory effects of cycloartane-type triterpene glycosides from Astragalus species. Biological and Pharmaceutical Bulletin 2000; 23: 834-837. doi: 10.1248/bpb.23.834
  • 23. Zheng Y, Dai Y, Liu W, Wang N, Cai Y et al. Astragaloside IV enhances taxol chemosensitivity of breast cancer via caveolin-1-targeting oxidant damage. Journal of Cellular Physiology 2019; 234: 4277-4290. doi: 10.1002/jcp.27196
  • 24. Zhou X, Liu Z, Long T, Zhou L, Bao Y. Immunomodulatory effects of herbal formula of Astragalus polysaccharide (APS) and Polysaccharopeptide (PSP) in mice with lung cancer. International Journal of Biological Macromolecules 2018a; 106: 596-601. doi: 10.1016/j.ijbiomac.2017.08.054
  • 25. Zhou R, Chen H, Chen J, Chen X, Wen Y et al. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/ AKT/mTOR signaling pathway. BMC Complementary and Alternative Medicine 2018b; 18: 83-91. doi: 10.1186/s12906-018-2148-2
  • 26. Li W, Hu X, Wang S, Jiao Z, Sun T et al. Characterization and antitumor bioactivity of Astragalus polysaccharides by immunomodulation. International Journal of Biological Macromolecules 2020; 15: 985-997 doi: 10.1016/j.ijbiomac.2019.09.189
  • 27. Isilar O, Bulut A, Sahin Yaglioglu A, Demirtas I, Arat E et al. Synthesis and biological evaluation of novel urea, thiourea and squaramide diastereomers possessing sugar backbone. Carbohydrate Research 2020; 492: 107991 doi: 10.1016/j.carres.2020.107991
  • 28. Kursun Aktar BS, Sicak Y, Tok TT, Emre EE, Sahin Yaglioglu A et al. Designing heterocyclic chalcones, benzoyl/sulfonyl hydrazones: An insight into their biological activities and molecular docking study. Journal of Molecular Structure 2020; 1211: 128059. doi: 10.1016/j. molstruc.2020.128059
  • 29. Karakus G, Kaplan Can H, Sahin Yaglioglu A. Synthesis, structural characterization, thermal behavior and cytotoxic/antiproliferative activity assessments of poly(maleic anhydride-alt-acrylic acid)/hydroxyurea polymer/drug conjugate. Journal of Molecular Structure 2020; 1210: 127989. doi: 10.1016/j.molstruc.2020.127989
  • 30. Ceylan M, Erkan S, Sahin Yaglioglu A, Akdogan Uremis N, Koç E. Antiproliferative evaluation of some 2-[2-(2-Phenylethenyl)- cyclopent-3-en-1-yl]-1,3-benzothiazoles: DFT and molecular docking study. Chemistry & Biodiversity 2020; 17 (4): e1900675. doi: 10.1002/cbdv.201900675
  • 31. Chandra JH, Fritz Z, Eberhard B. Carbon-13 chemical shift assignments of chromones and isoflavones. Canadian Journal of Chemistry 1980; 58: 1211-1219. doi: 10.1139/v80-189
  • 32. Kobayashi A, Yata S, Kawazu K. A β-Hydroxychalcone and flavonoids from alfalfa callus stimulated by fungal naphthoquinone, PO-1. Agricultural and Biological Chemistry 1988; 52: 223-3227. doi: 10.1080/00021369.1988.10869219
  • 33. Miyazawa M, Ando H, Okuno Y, Araki H. Biotransformation of isoflavones by Aspergillus niger, as biocatalyst. Journal of Molecular Catalysis B: Enzymatic 2004; 27: 91-95. doi: 10.1016/j.molcatb.2003.09.008
  • 34. Farag MA, Huhman DV, Dixon RA, Sumner LW. Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula. Cell Cultures1[C][W][OA]. Plant Physiology 2008; 146: 387–402. doi: 10.1104/pp.107.108431
  • 35. Chiriac ER, Chitescu CL, Borda D, Lupoae M, Gird CE et al. Comparison of the polyphenolic profile of Medicago sativa L. and Trifolium pratense L. sprouts in different germination stages using the UHPLC-Q exactive hybrid quadrupole orbitrap high-resolution mass spectrometry. Molecules 2020; 25 (10): 149-151. doi: 10.3390/molecules25102321
  • 36. Patron-Gonzalez D, Rios-Gomez R, Flores-Morales V, Rios MY. Metabolites of Machaerium isadelphum as chemophenetic markers of Machaerium genus. Biochemical Systematics and Ecology 2021; 94: 104202. doi: 10.1016/j.bse.2020.104202
  • 37. Lenssen AW, Martin SS, Townsend CE, Hawkins B. Acicerone: An Isoflavone From Astragalus cicer. Phtochemistry 1994; 36 (5): 1185- 1187. https://works.bepress.com/andrew_lenssen/67/
  • 38. Bedir E, Calıs I, Aquino R, Piacente S, Pizza C. Trojanoside H: a cycloartane-type glycoside from the aerial parts of Astragalus trojanus. Phytochemistry 1999; 51: 1017-1020. doi: 10.1016/S0031-9422(99)00035-7
  • 39. Abd El-Latif RR, Shabana MH, El-Gandour AH, Mansour RM, Sharaf MA. New Isoflavone from Astragalus peregrinus. Chemistry of Natural Compounds 2003; 39: 536-537. doi: 10.1023/B:CONC.0000018105.23722.7d
  • 40. Gülcemal D, Aslanipour B, Bedir E. Secondary Metabolites from Turkish Astragalus Species. In: Ozturk M., Hakeem K. (eds) Plant and Human Health, Volume 2. Springer, Cham. 2019. doi: 10.1007/978-3-030-03344-6_2
  • 41. Kar S, Akhir A, Chopra S, Ohki S, Karanam B et al. Benzopyrylium salts as new anticancer, antibacterial, and antioxidant agents. Medicinal Chemistry Research 2021; 30: 877–885. doi: 10.1007/s00044-020-02685-3
  • 42. Sahin A, Cakmak O, Demirtas I, Okten S, Tutar A. Efficient and selective synthesis of quinoline derivatives”. Tetrahedron 2008; 64 (43): 10068-10074.
  • 43. Akrawi OA, Mohammed HH, Langer P. 2013. Synthesis and Suzuki—Miyaura Reactions of 3,6,8-Tribromoquinoline: A Structural Revision. ChemInform Abstract: doi: 10.1002/chin.201339162
  • 44. Casal JJ, Asis SE. Natural and synthetic quinoline derivatives as antituberculosis. Agents 2017; 2 (1): 1007-1009.
  • 45. Starratt AN, Caveney S. Quinoline-2-carboxylic acids from Ephedra species. Phytochemistry 1996; 4 (5): 1477-1478.
  • 46. Akhmedzhanova VI, Rasulova, KA, Bessonova IA, Shashkov AS, Abdullaev ND et al. A new type quinoline alkaloid from plants of the Haplophyllum genus. Chemistry of Natural Compounds 2005; 41 (1): 60-64.
  • 47. Li YK, Zhao QJ, Hu J, Zou Z, He XY et al. Two New quinoline alkaloid mannopyranosides from Solidago canadensis. Helvetica 2009; 92 (5): 928-931.
  • 48. Kumar R, Duffy S, Avery VA, Carroll AR, Davis RA. Microthecaline a, a quinoline serrulatane alkaloid from the roots of the australian desert plant Eremophila microtheca. Journal of Natural Products 2018; 81 (4): 1079–1083.
  • 49. Yamashita M, Saito Y, Rahim A, Fukuyoshi S, Miyake K et al. Novel furoquinolinones from an Indonesian Plant, Lunasia amara. Tetrahedron Letters 2020; 61 (20): 151861.
  • 50. Robertson LP, Makwana V, Voser TM, Holland DC, Carroll AR. Leptanoine D, a new quinoline alkaloid from the australian tree Pitaviaster haplophyllus (Rutaceae). Australian Journal of Chemistry 2021; 74 (3), 173-178.
  • 51. Wulff P, Carle JS, Christophersen C. Marine alkaloids—6. The first naturally occurring bromo-substituted quinoline from Flustra foliacea. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 1982; 71 (3): 525-526.
  • 52. Website https://chemistry.stackexchange.com/questions/103925/exceptions-to-the-nitrogen-rule-in-mass-spectrometry [accessed 16.09.2021].
  • 53. Separation Science (2021). [online]. Website https://blog.sepscience.com/massspectrometry/the-role-of-isotope-peak-intensitiesobtained-using-mass-spectrometry-in-determining-an-elemental-composition-part-2 [accessed 06.04.2021].
  • 54. Moreno J, Fatela F, Leorri E, Araujo MF, Moreno F et al. Bromine enrichment in marsh sediments as a marker of environmental changes driven by Grand Solar Minima and anthropogenic activity (Caminha, NW of Portugal). Science of the Total Environment 2015; 506–507; 554–566. doi: 10.1016/j.scitotenv.2014.11.062
  • 55. McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A et al. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 2014; 157: 1380–1392. doi: 10.1016/j.cell.2014.05.009
  • 56. Shtangeeva I, Niemela M, Peramaki P. Effects of bromides of potassium and ammonium on some crops. Journal of Plant Nutrition 2019; 42: 2209–2220. doi: 10.1080/01904167.2019.1655037
  • 57. Gribble GW. The diversity of naturally occurring organobromine compounds. Chemical Society Reviews 1999; 28: 335–346. doi: 10.1039/ A900201D
  • 58. Karagöz A, Turgut-Kara N, Çakır Ö, Demirgan R, Arı Ş. Cytotoxic Activity of Crude Extracts from Astragalus chrysochlorus (Leguminosae). Biotechnology & Biotechnological Equipment 2007; 21(2): 220-222.
  • 59. Jozwiak M, Filipowska A, Fiorino F , Struga M. Anticancer activities of fatty acids and their heterocyclic derivatives. European Journal of Pharmacology 2020; 871: 172937.
  • 60. Al-Snafi AE. Chemical constituents and pharmacological effects of Astragalus hamosus and Astragalus tribuloides grown in Iraq. Asian Journal of Pharmaceutical Sciences 2015; 5 (4): 321-328.
  • 61. Krasteva I, Platikanov S, Nikolov S, Kaloga M. Flavonoids from Astragalus hamosus. Natural Product Research 2007; 21 (5): 392-395 doi: 10.1080/14786410701236871
  • 62. Krasteva I, Momekov G, Zdraveva P, Konstantinov S, Nikolov S. Antiproliferative effects of a flavonoid and saponins from Astragalus hamosus against human tumor cell lines. Pharmacognosy Magazine 2008; 4: 269-272. http://www.phcog.com/text.asp?2008/4/16/269/57997
  • 63. Shaikh AM, Shrivastava B, Apte KG, Navale SD. Medicinal plants as potential source of anticancer agents: a review. Journal of Pharmacognosy and Phytochemistry. 2016; 5 (2): 291-295.
  • 64. Liu C, Wang K, Zhuang J, Gao C, Li H et al. The modulatory properties of Astragalus membranaceus treatment on triple-negative breast cancer: an integrated pharmacological method. Frontiers in Pharmacology 2019; 10: 1171-1184. doi: 10.3389/fphar.2019.01171
  • 65. Mehraban F, Mostafazadeh M, Sadeghi H, Azizi A, Toori MA et al. Anticancer activity of Astragalus ovinus against 7, 12 dimethyl benz (a) anthracene (DMBA)-induced breast cancer in rats. Avicenna Journal of Phytomedicine 2020; 10 (5): 533–545. PMCID: PMC7508319
  • 66. Al-Harbi NA, Awad NS, Alsberi HM, Abdein MA. Apoptosis Induction, Cell Cycle Arrest and in vitro Anticancer Potentiality of Convolvulus spicatus and Astragalus vogelii. World. 2019; 8: 69–75.
  • 67. Zhu J, Zhang H, Zhu Z, Zhang Q, Ma X et al. Effects and mechanism of flavonoids from Astragalus complanatus on breast cancer growth. Naunyn-Schmiedeberg’s Archives of Pharmacology 2015; 388: 965–972. doi: 10.1007/s00210-015-1127-0
  • 68. Gupta M, Jun Lee H, Barden CJ, Weaver DF. The Blood–Brain Barrier (BBB) Score. Journal of Medicinal Chemistry 2019; 62 (21): 9824– 9836. doi: 10.1021/acs.jmedchem.9b01220
  • 69. Shweta M, Rashmi D. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using Swiss ADME predictor. Journal of Drug Delivery Science and Technology 2019; 9 (2-S): 266-369. DOI doi: 10.22270/jddt.v9i2-s.2710
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

DFT / TDDFT insights into excited state intra-molecular hydrogen atom transfer mechanism in Liqcoumarin: an EFP1 study

Kandigowda JAGADEESHA, Yelechakanahalli Lingaraju RAMU, Mariyappa RAMEGOWDA

Synthesis of benzoyl hydrazones having 4-hydroxy-3,5-dimethoxy phenyl ring, their biological activities, and molecular modeling studies on enzyme inhibition activities

Gizem TATAR, Bedriye Seda KURŞUN AKTAR, Emine Elçin ORUÇ EMRE, Yusuf SICAK

Investigation of biological activities of plant extract and green synthesis silver nanoparticles obtained from Gilaburu (Viburnum opulus L.) fruits

Ahmet KARADAĞ, Nesrin KORKMAZ, Ali Savaş BÜLBÜL, Birgütay ŞAHİN, İ. Seyfettin ÇELİK

Supramolecular solvent-based microextraction for the preconcentration of $Pb^{2+} and Cd2^{+}$ prior to spectrophotometric detection

Rafaqat Ali KHAN, Bushra ISMAIL, Asad Muhammad KHAN, Huma ZAFAR, Jan NISAR, Faheem SHAH

Synthesis of modified nanocomposite material and its use on removal of cesium from aqueous media

Bilal ÇETİN, Bektaş KARAKELLE, Mustafa ÖZCAN

Recycled human hair-derived activated carbon for energy-related applications

Oğuzhan KOTAN, Hatice BAYRAKÇEKEN

First determination of anticancer, cytotoxic, and in silico ADME evaluation of secondary metabolites of endemic Astragalus leucothrix Freyn & Bornm

Melda DÖLARSLAN, İbrahim DEMİRTAŞ, Duygu GÜNEŞ GÜRBÜZ, Ayşe ŞAHİN YAĞLIOĞLU

Production of NiMn2O4 hollow spheres and $CoFe_2O_4$bowl-like structures by using block copolymer stabilized polystyrene spheres as a hard template

Vural BÜTÜN, Gökhan KOÇAK

Synthesis, molecular modeling, and biological evaluation of novel imatinib derivatives as anticancer agents

Yuk Yin NG, Özlem ULUCAN, Fulya GÜNAY, Sevcan BALTA, Zuhal TURGUT, Ömer Tahir GÜNKARA

Virtual screening, drug-likeness analysis, and molecular docking study of potential severe acute respiratory syndrome coronavirus 2 main protease inhibitors

Nikola V. NEDELJKOVIĆ, Miloš V. NIKOLIĆ, Ana S. STANKOVIĆ, Nevena S. JEREMIĆ, Dušan Lj. TOMOVIĆ, Andriana M. BUKONJIĆ, Gordana P. RADIĆ, Marina Ž. MIJAJLOVIĆ