Enhanced ethanol sensing properties of WO3 modified $TiO_2$ nanorods

Enhanced ethanol sensing properties of WO3 modified $TiO_2$ nanorods

Pristine and WO3 decorated $TiO_2$ nanorods (NRs) were synthesised to investigate n-n-type heterojunction gas sensing properties. $TiO_2$ NRs were fabricated via hydrothermal method on fluorine-doped tin oxide coated glass (FTO) substrates. Then, tungsten was sputtered on the $TiO_2$ NRs and thermally oxidised to obtain WO3 nanoparticles. The heterostructure was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Fabricated sensor devices were exposed to VOCs such as toluene, xylene, acetone and ethanol, and humidity at different operation temperatures. Experimental results demonstrated that the heterostructure has better sensor response toward ethanol at 200 °C. Enhanced sensing properties are attributed to the heterojunction formation by decorating $TiO_2$ NRs with WO3

___

  • 1. Cui P, Schito G, Cui Q. VOC emissions from asphalt pavement and health risks to construction workers. Journal of Cleaner Production 2020; 244: 118757.
  • 2. Liu Y, Shao M, Fu L, Lu S, Zeng L et al. Source profiles of volatile organic compounds (VOCs) measured in China: part I. Atmospheric Environment. 2008; 42 (25): 6247-6260.
  • 3. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Frontiers in Public Health 2020; 8.
  • 4. Nabizadeh R, Sorooshian A, Delikhoon M, Baghani AN, Golbaz S et al. Characteristics and health effects of volatile organic compound emissions during paper and cardboard recycling. Sustainable Cities and Society 2020; 56: 102005.
  • 5. Pekey B, Yılmaz H. The use of passive sampling to monitor spatial trends of volatile organic compounds (VOCs) at an industrial city of Turkey. Microchemical Journal 2011; 97 (2): 213-219.
  • 6. Xie Y, Berkowitz CM. The use of positive matrix factorization with conditional probability functions in air quality studies: an application to hydrocarbon emissions in Houston, Texas. Atmospheric Environment 2006; 40 (17): 3070-3091.
  • 7. Buszewski B, Kęsy M, Ligor T, Amann A. Human exhaled air analytics: biomarkers of diseases. Biomedical Chromatography. 2007; 21 (6): 553-566.
  • 8. Kim K-H, Jahan SA, Kabir E. A review of breath analysis for diagnosis of human health. Trends in Analytical Chemistry 2012; 33: 1-8.
  • 9. Popov TA. Human exhaled breath analysis. Annals of Allergy, Asthma & Immunology 2011; 106 (6): 451-456. 10. Jones A. Excretion of low-molecular weight volatile substances in human breath: focus on endogenous ethanol. Journal of Analytical Toxicology 1985; 9 (6): 246-250
  • 11. Blohm A, Sieburg A, Popp J, Frosch T. Detection of gas molecules by means of spectrometric and spectroscopic methods. Advanced Nanostructures for Environmental Health: Elsevier; 2020. p. 251-294
  • 12. Cernosek T, Eckert KE, Carter DO, Perrault KA. Volatile organic compound profiling from postmortem microbes using gas chromatography–mass spectrometry. Journal of Forensic Sciences 2020; 65 (1): 134-143
  • 13. Elosúa C, Bariáin C, Matías IR, Arregui FJ, Luquin A et al. Volatile alcoholic compounds fibre optic nanosensor. Sensors and Actuators B: Chemical 2006; 115 (1): 444-449.
  • 14. Guha P, Santra S, Gardner J. Integrated CMOS-based sensors for gas and odor detection. Semiconductor Gas Sensors: Elsevier; 2020. p.465-487.
  • 15. Mirzaei A, Leonardi S, Neri G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceramics international 2016; 42 (14): 15119-15141.
  • 16. Sureshkumar N, Dutta A. Environmental gas sensors based on nanostructured thin films. Multilayer thin films-versatile applications for materials engineering: IntechOpen; 2020.
  • 17. Alev O, Kılıç A, Çakırlar Ç, Büyükköse S, Öztürk ZZ. Gas sensing properties of $p-Co_3O_4/n-TiO_2$ nanotube heterostructures. Sensors 2018;18 (4): 956.
  • 18. Alev O, Sarıca N, Özdemir O, Arslan LÇ, Büyükköse S et al. Cu-doped ZnO nanorods based QCM sensor for hazardous gases. Journal of Alloys and Compounds 2020; 826: 154177.
  • 19. Fu Z, Zhang G, Tang Z, Zhang H. Preparation and application of ordered mesoporous metal oxide catalytic materials. Catalysis Surveys from Asia 2020; 24 (1): 38-58.
  • 20. Lee J-H, Mirzaei A, Kim J-Y, Kim J-H, Kim HW et al. Optimization of the surface coverage of metal nanoparticles on nanowires gas sensors to achieve the optimal sensing performance. Sensors and Actuators B: Chemical 2020; 302: 127196.
  • 21. Sarıca N, Alev O, Arslan LÇ, Öztürk ZZ. Characterization and gas sensing performances of noble metals decorated CuO nanorods. Thin Solid Films 2019; 685: 321-328.
  • 22. Şennik E, Alev O, Öztürk ZZ. The effect of Pd on the $H_2$ and VOC sensing properties of $TiO_2$ nanorods. Sensors and Actuators B: Chemical 2016; 229: 692-700.
  • 23. Alev O, Şennik E, Kılınç N, Öztürk ZZ. Gas sensor application of hydrothermally growth $TiO_2$ nanorods. Procedia Engineering 2015; 120: 1162-1165.
  • 24. Maziarz W, Kusior A, Trenczek-Zajac A. Nanostructured TiO2 -based gas sensors with enhanced sensitivity to reducing gases. Beilstein Journal of Nanotechnology 2016; 7 (1): 1718-1726.
  • 25. Sennik E, Kilinc N, Ozturk ZZ. Electrical and VOC sensing properties of anatase and rutile $TiO_2$ nanotubes. Journal of Alloys and Compounds 2014; 616: 89-96.
  • 26. Seo M-H, Yuasa M, Kida T, Kanmura Y, Huh J-S et al. Gas sensor using noble metal-loaded $TiO_2$ nanotubes for detection of large-sized volatile organic compounds. Journal of the Ceramic Society of Japan 2011; 119 (1395): 884-889.
  • 27. Teleki A, Pratsinis SE, Kalyanasundaram K, Gouma P. Sensing of organic vapors by flame-made $TiO_2$ nanoparticles. Sensors and Actuators B: Chemical 2006; 119 (2): 683-90.
  • 28. Alev O, Şennik E, Öztürk ZZ. Improved gas sensing performance of p-copper oxide thin film/n-$TiO_2$ nanotubes heterostructure. Journal of Alloys and Compounds 2018; 749: 221-228.
  • 29. Avansi Jr W, Catto AC, Da Silva LF, Fiorido T, Bernardini S et al. One-dimensional $V_2O_5/TiO_2$ heterostructures for chemiresistive ozone sensors. ACS Applied Nano Materials 2019; 2 (8): 4756-1764.
  • 30. Deng J, Wang L, Lou Z, Zhang T. Design of CuO-$TiO_2$ - heterostructure nanofibers and their sensing performance. Journal of Materials Chemistry A 2014; 2 (24): 9030-9034.
  • 31. Lyson-Sypien B, Kusior A, Rekas M, Zukrowski J, Gajewska M et al. Nanocrystalline $TiO_2/SnO_244 heterostructures for gas sensing. Beilstein Journal of Nanotechnology 2017; 8 (1): 108-122.
  • 32. Wang Y, Wu T, Zhou Y, Meng C, Zhu W et al. $TiO_2$ -based nanoheterostructures for promoting gas sensitivity performance: designs, developments, and prospects. Sensors 2017; 17 (9): 1971.
  • 33. Kanda K, Maekawa T. Development of a $WO_3$ thick-film-based sensor for the detection of VOC. Sensors and Actuators B: Chemical 2005; 108 (1-2): 97-101.
  • 34. Vallejos S, Khatko V, Calderer J, Gracia I, Cané C et al. Micro-machined $WO_3$ -based sensors selective to oxidizing gases. Sensors and Actuators B: Chemical 2008; 132 (1): 209-215.
  • 35. Liu Y, Xie C, Li H, Chen H, Zou T, Zeng D. Improvement of gaseous pollutant photocatalysis with $WO_3/TiO_2$ heterojunctional-electrical layered system. Journal of Hazardous Materials 2011; 196: 52-58.
  • 36. Prabhu S, Nithya A, Mohan SC, Jothivenkatachalam K (editors). Synthesis, surface acidity and photocatalytic activity of $WO_3/TiO_2$ nanocomposites – an overview. Materials Science Forum; 2014; 781: 63-78.
  • 37. Tang K, Zhang Y, Shi Y, Cui J, Shu X et al. Fabrication of $WO_3/TiO_2$ core-shell nanowire arrays: structure design and high electrochromic performance. Electrochimica Acta 2020; 330: 135189.
  • 38. Depero L, Ferroni M, Guidi V, Marca G, Martinelli G et al. Preparation and micro-structural characterization of nanosized thin film of $WO_3/TiO_2$ as a novel material with high sensitivity towards NO2. Sensors and Actuators B: Chemical 1996; 36 (1-3): 381-383.
  • 39. Lee DS, Han SD, Lee SM, Huh JS, Lee DD. The $TiO_2$-adding effects in WO3-based NO2 sensors prepared by coprecipitation and precipitation method. Sensors and Actuators B: Chemical 2000; 65 (1-3): 331-335.
  • 40. Yao Y, Yuan J, Chen X, Tan L, Gu Q et al. In situ construction and sensing mechanism of $WO_3/TiO_2$ composite coatings based on the semiconductor heterojunctions. Journal of Materials Research and Technology 2019; 8 (4): 3580-8358.
  • 41. Zanetti S, Rocha K, Rodrigues J, Longo E. Soft-chemical synthesis, characterization and humidity sensing behavior of $WO_3/TiO_2$ nanopowders. Sensors and actuators B: Chemical 2014; 190: 40-47.
  • 42. Meng W, Dai L, Zhu J, Li Y, Meng W et al. A novel mixed potential NH3 sensor based on TiO2 @ WO3 core-shell composite sensing electrode. Electrochimica Acta 2016; 193: 302-310.
  • 43. Zappa D, Galstyan V, Kaur N. Munasinghe Arachchige HMM, Sisman O, Comini E. Metal oxide -based heterostructures for gas sensors- a review. Analytica Chimica Acta 2018; 1039: 1-23.
  • 44. Walker JM, Akbar SA, Morris PA. Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review. Sensors and Actuators B: Chemical 2019; 286: 624-640.
  • 45. Moseley PT. Progress in the development of semiconducting metal oxide gas sensors: a review. Measurement Science and Technology 2017; 28 (8): 082001.
  • 46. Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ et al. Vertically aligned single crystal $TiO_2$ nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Letters 2008; 8 (11).
  • 47. Astinchap B, Moradian R, Gholami K. Effect of sputtering power on optical properties of prepared $TiO_2$ thin films by thermal oxidation of sputtered Ti layers. Materials Science in Semiconductor Processing 2017; 63: 169-175.
  • 48. Xiao G, Shi C, Li L, Zhang Z, Ma C et al. A 200-nm length $TiO_2$ nanorod array with a diameter of 13 nm and areal density of 1100 µm-2for efficient perovskite solar cells. Ceramics International 2017; 43 (15): 12534-12539.
  • 49. Altomare M, Nguyen NT, Hejazi S, Schmuki P. A Cocatalytic electron‐ transfer cascade site‐ selectively placed on TiO2 nanotubes yields enhanced photocatalytic $H_2$ evolution. Advanced Functional Materials 2018; 28 (2): 1704259.
  • 50. Şennik E, Soysal U, Öztürk ZZ. Pd loaded spider-web $TiO_2$ nanowires: fabrication, characterization and gas sensing properties. Sensors and Actuators B: Chemical 2014; 199: 424-432.
  • 51. Lin CW, Huang KL, Chang KW, Chen JH, Chen KL et al. Ultraviolet photodetector and gas sensor based on amorphous In-Ga-Zn-O film. Thin Solid Films 2016; 618: 73-76.
  • 52. Wu CH, Jiang GJ, Chang KW, Lin CW, Chen KL. Highly sensitive amorphous In–Ga–Zn–O films for ppb-level ozone sensing: effects of deposition temperature. Sensors and Actuators B: Chemical 2015; 211: 354-358.
  • 53. Lai CW, Sreekantan S. Preparation of hybrid $WO_3/TiO_2$ nanotube photoelectrodes using anodization and wet impregnation: improved water-splitting hydrogen generation performance. International Journal of Hydrogen Energy 2013; 38 (5): 2156-2166.
  • 54. Banerjee AN. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnology, Science and Applications 2011; 4: 35.
  • 55. Suryawanshi H, Patil D. Synthesis of nanostructure TiO2 nanorod array on FTO substrate using hydrothermal method and its photocatalytic activity. International Journal for Research in Applied Science & Engineering Technology 2018; 6 (4): 48-53.
  • 56. Meng X, Shin DW, Yu SM, Park MH, Yang C et al. Formation mechanism of rutile TiO2 rods on fluorine doped tin oxide glass. Journal of Nanoscience and Nanotechnology 2014; 14 (11): 8839-8844.
  • 57. Liu Y, Li G, Mi R, Deng C, Gao P. An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis. Sensors and Actuators B: Chemical 2014; 191: 537-544.
  • 58. Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors and Actuators B: Chemical 2014; 204: 250-272.
  • 59. Liu L, Guo C, Li S, Wang L, Dong Q et al. Improved $H_2$ sensing properties of Co-doped $SnO_2$ nanofibers. Sensors and Actuators B: Chemical 2010; 150 (2): 806-810.
  • 60. Wöllenstein J, Burgmair M, Plescher G, Sulima T, Hildenbrand J et al. Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sensors and Actuators B: Chemical 2003; 93 (1): 442-448.
  • 61. Liu PF, Yang S, Zheng LR, Zhang B, Yang HG. Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. Journal of Materials Chemistry A 2016; 4 (24): 9578-9584.
  • 62. Kohl D. Function and applications of gas sensors. Journal of Physics D: Applied Physics 2001; 34 (19): R125-R49.
  • 63. Xu C, Tamaki J, Miura N, Yamazoe N. Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors and Actuators B: Chemical 1991; 3 (2): 147-155.
  • 64. Ali H, Ismail N, Hegazy A, Mekewi M. A novel photoelectrode from TiO2-WO3 nanoarrays grown on FTO for solar water splitting. Electrochimica Acta 2014; 150: 314-319.