Preparation and characterization of form-stable phase change material/end-of-life tires composites for thermal energy storag

Preparation and characterization of form-stable phase change material/end-of-life tires composites for thermal energy storag

The management of end-of-life tires (ELT) waste gains importance in aspect of possible environmental andeconomic issues so the waste recycling becomes unavoidable. This study describes the fabrication and characterizationof a new phase changing material (PCM)/ELT microcomposites that could be used in thermal energy storage. Paraffintogether with the 4 fatty acids and ELT rubber powder are used as PCMs and as the supporting material, respectively.Paraffin/ELT composites are fabricated, as well, by the vacuum impregnation method in order to investigate the effectof the preparation method. The thermal, morphological, and chemical properties of the prepared PCM/ELT rubbermicrocomposites are determined with differential scanning calorimetry (DSC), scanning electron microscopy (SEM), andFTIR, respectively. Additionally, the effects of the PCM amount on the composite materials are investigated. As a resultof DSC results, the melting temperature and latent heat of the paraffin/ELT rubber microcomposites are determinedas 37.2 °C and 80.79 J/g for direct impregnation method and 36.8 °C and 80.69 J/g for vacuum impregnation method,respectively. Based on the findings of this study, it can be claimed that PCM/ELT rubber microcomposites can be usedas energy-saving materials in thermal energy storage applications.

___

  • 1. Fang G, Tang F, Cao L. Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renewable and Sustainable Energy Reviews 2014; 40: 237-259. doi: 10.1016/j.rser.2014.07.179
  • 2. Guo X, Huang Y, Cao J. Performance of a thermal energy storage composite by incorporating diatomite stabilized paraffin as phase change material. Energy and Buildings 2018; 158: 1257-1265. doi: 10.1016/j.enbuild.2017.11.032
  • 3. Acik G, Karabulut HRF, Altinkok C, Karatavuk AO. Synthesis and characterization of biodegradable polyurethanes made from cholic acid and l-lysine diisocyanate ethyl ester. Polymer Degradation and Stability, 2019; 165: 43-48. doi: 10.1016/j.polymdegradstab.2019.04.015
  • 4. Jain JP, Sokolsky M, Kumar N, Domb AJ, Fatty acid based biodegradable polymer. Polymer Reviews, 2008; 48(1): 156-191. doi: 10.1080/15583720701834232
  • 5. Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas, A. Progress in used tyres management in the European Union: a review. Waste Management 2012; 32 (10): 1742-1751. doi: 10.1016/j.wasman.2012.05.010
  • 6. Myhre M, Saiwari S, Dierkes W, Noordermeer J. Rubber recycling: chemistry, processing, and applications. Rubber Chemistry and Technology 2012; 85 (3): 408-449. doi: 10.5254/rct.12.87973
  • 7. Bressi S, Santos J, Giunta M, Pistonesi L, Presti DL. A comparative life-cycle assessment of asphalt mixtures for railway sub-ballast containing alternative materials. Resources, Conservation and Recycling 2018; 137: 76-88. doi: 10.1016/j.resconrec.2018.05.028
  • 8. Sienkiewicz M, Janik H, Borzędowska-Labuda K, Kucińska-Lipka J. Environmentally friendly polymer-rubber composites obtained from waste tyres: a review. Journal of Cleaner Production 2017; 147: 560-571. doi: 10.1016/j.jclepro.2017.01.121
  • 9. Torretta V, Rada EC, Ragazzi M, Trulli E, Istrate IA et al. Treatment and disposal of tyres: two EU approaches. a review. Waste Management 2015; 45: 152-160. doi: 10.1016/j.wasman.2015.04.018
  • 10. Ghofrani M, Ashori A, Rezvani MH, Ghamsari FA. Acoustical properties of plywood/waste tire rubber composite panels. Measurement 2016; 94: 382-387.
  • 11. Garcia D, Lopez J, Balart R, Ruseckaite RA, Stefani PM. Composites based on sintering rice husk–waste tire rubber mixtures. Materials & Design 2007; 28 (7): 2234-2238. doi: 10.1016/j.measurement.2016.08.020
  • 12. Diaconescu RM, Barbuta M, Harja M. Prediction of properties of polymer concrete composite with tire rubber using neural networks. Materials Science and Engineering: B 2013; 178 (19): 1259-1267. doi: 10.1016/j.mseb.2013.01.014
  • 13. Song S, Dong L, Chen S, Xie H, Xiong C. Stearic–capric acid eutectic/activated-attapulgiate composite as formstable phase change material for thermal energy storage. Energy Conversion and Management 2014; 81: 306-311. doi: 10.1016/j.enconman.2014.02.045
  • 14. Chen F, Wolcott M. Polyethylene/paraffin binary composites for phase change material energy storage in building: a morphology, thermal properties, and paraffin leakage study. Solar Energy Materials and Solar Cells 2015; 137: 79-85. doi: 10.1016/j.solmat.2015.01.010
  • 15. Tang B, Wang L, Xu Y, Xiu J, Zhang S. Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells 2016; 144: 1-6. doi: 10.1016/j.solmat.2015.08.012
  • 16. Fang G, Tang F, Cao L. Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renewable and Sustainable Energy Reviews 2014; 40: 237-259. doi: 10.1016/j.rser.2014.07.179
  • 17. Nomura T, Okinaka N, Akiyama T. Impregnation of porous material with phase change material for thermal energy storage. Materials Chemistry and Physics 2009; 115 (2-3): 846-850. doi: 10.1016/j.matchemphys.2009.02.045
  • 18. Tang Y, Su D, Huang X, Alva G, Liu L et al. Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity. Applied Energy 2016; 180: 116-129. doi: 10.1016/j.apenergy.2016.07.106
  • 19. Konuklu, Y, Ersoy O. Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Solar Energy Materials and Solar Cells 2017; 168: 130-135. doi: 10.1016/j.solmat.2017.04.019
  • 20. Konuklu Y, Ersoy O. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage. Applied Thermal Engineering 2016; 107: 575-582. doi: 10.1016/j.applthermaleng.2016.07.012
  • 21. Konuklu Y, Ersoy O, Gokce O. Easy and industrially applicable impregnation process for preparation of diatomitebased phase change material nanocomposites for thermal energy storage. Applied Thermal Engineering 2015; 91: 759-766. doi: 10.1016/j.applthermaleng.2015.08.040
  • 22. Guo X, Huang Y, Cao J. Performance of a thermal energy storage composite by incorporating diatomite stabilized paraffin as phase change material. Energy and Buildings, 2018; 158: 1257-1265. doi: 10.1016/j.enbuild.2017.11.032
  • 23. Mitran RA, Berger D, Matei C. Improving thermal properties of shape-stabilized phase change materials containing lauric acid and mesocellular foam silica by assessing thermodynamic properties of the non-melting layer. Thermochimica Acta 2018; 660: 70-76. doi: 10.1016/j.tca.2017.12.019
  • 24. Konuklu Y. Yalıtım PlakasıOlarak Ömrünü Tamamlamiş Lastik/Faz Değiştiren Madde Kompozit Üretim Yöntemi, Application No: 2017/03493. Ankara, Turkey: Turkish Patent and Trademark Office; 2017.
  • 25. Maleki M, Ahmadi PT, Mohamdi H, Karimian H, Ahmadi R et al. Photo-thermal conversion structure by infiltration of paraffin in three dimensionally interconnected porous polystyrene-carbon nanotubes (PS-CNT) polyHIPE foam. Solar Energy Materials and Solar Cells, 2019; 191: 266-274. doi: 10.1016/j.solmat.2018.11.022
  • 26. Karabork F, Pehlivan E, Akdemir A. Characterization of styrene butadiene rubber and microwave devulcanized ground tire rubber composites. Journal of Polymer Engineering 2014; 34 (6): 543-554. doi: 10.1515/polyeng-2013- 0330
  • 27. Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Applied Energy 2013; 105: 229-237. doi: 10.1016/j.apenergy.2013.01.005
  • 28. Zeng JL, Zheng SH, Yu SB, Zhu FR, Gan J et al. Preparation and thermal properties of palmitic acid/polyaniline/ exfoliated graphite nanoplatelets form-stable phase change materials. Applied Energy 2014; 115: 603-609. doi: 10.1016/j.apenergy.2013.10.061
  • 29. Qu M, Guo C, Li L, Zhang X. Preparation and investigation on tetradecanol and myristic acid/cellulose form-stable phase change material. Journal of Thermal Analysis and Calorimetry 2017; 130 (2): 781-790.
  • 30. Shanmugharaj AM, Kim JK, Ryu SH. UV surface modification of waste tire powder: characterization and its influence on the properties of polypropylene/waste powder composites. Polymer Testing 2005; 24 (6): 739-745.
  • 31. Zhang JL, Chen HX, Ke CM, Zhou Y, Lu HZ et al. Graft polymerization of styrene onto waste rubber powder and surface characterization of graft copolymer. Polymer Bulletin 2012; 68 (3): 789-801. doi: 10.1007/s00289-011-0586-9
  • 32. Konuklu Y, Ersoy O. Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Solar Energy Materials and Solar Cells 2017; 168, 130-135. doi: 10.1016/j.solmat.2017.04.019
  • 33. Konuklu Y, Erzin F, Akar HB, Turan A. Cellulose-based myristic acid composites for thermal energy storage applications. Solar Energy Materials and Solar Cells 2019; 193: 85-91. doi: 10.1016/j.solmat.2019.01.006