Combined computational and experimental studies on cysteine-sulfadiazine adduct formation

The electrochemical characterization of sulfadiazine-cysteine SD-CYS adduct formation was performed in phosphatebuffer pH7 onthebasisofvoltammetriccurrentandpeakpotentialmeasurements. Duetotheassociationof cysteine with sulfadiazine, the reduction peak currents of mercuric and mercurous cysteine thiolates decreased and their peak potentials simultaneously shifted to less negative potentials. By using the current changes of mercurous cysteine thiolate, it was determined that cysteine and sulfadiazine are associated with a 1:1 stoichiometry with a conditional association constant of 1.99 ×10$^{4}$ M$^{-1}$. In addition to experimental studies, a computational approach was carried out to study the geometrical parameters, electron densities, and UV-Vis absorption spectra of sulfadiazine and SDCYS adduct in water. Calculated B3LYP/6-311++G d,p level and experimental UV-Vis absorption spectra of the compounds were found to be in good agreement in water. The computational study suggests that cysteine bound to the C 5 on the pyrimidine ring via SH-group nucleophilic attack. Computational results reveal that sulfadiazine and its derivatives effectively bind cysteine and may lead to new molecules/drugs to target cysteine.

___

  • 1. Delrivo A, Zoppi A, Longhi MR. Interaction of sulfadiazine with cyclodextrins in aqueous solution and solid state. Carbohydrate Polymers 2012; 87: 1980-1988. doi: 10.1016/j.carbpol.2011.10.025
  • 2. Ali MS, Al-Lohedan HA. Interaction of human serum albumin with sulfadiazine. Journal of Molecular Liquids 2014; 197: 124-130. doi: 10.1016/j.molliq.2014.04.029
  • 3. Islam MM, Sonu VK, Gashnga PM, Moyon NS, Mitra S. Caffeine and sulfadiazine interact differently with human serum albumin: a combined fluorescence and molecular docking study. Spectrochimica Acta Part A 2016; 152: 23-33. doi: 10.1016/j.saa.2015.07.051
  • 4. Sawhney N, Kumar M, Sandarve, Sharma P, Sharma AK et al. Structure-making behaviour of L-arginine in aqueous solution of drug ketorolac tromethamine: volumetric, compressibility and viscometric studies. Physics and Chemistry of Liquids 2018; 57: 184-203. doi: 10.1080/00319104.2018.1437918.
  • 5. Banipal TS, Kaur J, Banipal PK, Singh K. Study of interactions between amino acids and zinc chloride in aqueous solutions through volumetric measurements at T = (288.15 to 318.15) K. Journal of Chemical and Engineering Data 2008; 53: 1803-1816. doi: 10.1021/je8001464
  • 6. Pal A, Soni S. Volumetric approach to the interaction of diglycine in aqueous solutions of sulpha drugs at T = 288.15–308.15 K. Fluid Phase Equilibria 2012; 134: 144-151. doi: 10.1016/j.fluid.2012.08.001
  • 7. Nain AK, Chand D. Volumetric, ultrasonic, and viscometric behaviour of glycine, dl-alanine, and l-valine in aqueous 1,4-butanediol solutions at different temperatures. Journal of Chemical Thermodynamics 2009; 41: 243-249. doi: 10.1016/j.jct.2008.09.008
  • 8. Thomson JG, Cook M, Guttman M, Smith J, Thilmony R. Novel sul I binary vectors enable an inexpensive foliar selection method in Arabidopsis. BMC Res Notes 2011; 4: 44 doi: 10.1186/1756-0500-4-44
  • 9. Voeller D, Kovacs J, Andrawis V, Chu E, Masur H et al. Interaction of Pneumocystis carinii dihydropteroate synthase with sulfonamides and diaminodiphenyl sulfone (dapsone). Journal of Infectious Diseases 1994; 169: 456- 459. doi: 10.1093/infdis/169.2.456
  • 10. Krenske EH, Petter RC, Houk KN. Kinetics and thermodynamics of reversible thiol additions to mono- and deactivated Michael acceptors: implications for the design of drugs that bind covalently to cysteines. Journal of Organic Chemistry 2016; 81: 11726-11733. doi: 10.1021/acs.joc.6b02188
  • 11. Abhishek S, Sivadas S, Satish M, Deeksha W, Rajakumara E. Dynamic basis for auranofin drug recognition by thiol-reductases of human pathogens and intermediate coordinated adduct formation with catalytic cysteine residues. ACS Omega 2019; 4: 9593-9602. doi: 10.1021/acsomega.9b00529
  • 12. Burtis CA, Ashwood ER. Tietz Fundamentals of Clinical Chemistry (4th Ed.). Philadelphia, PA, USA: WB Saunders, 1996.
  • 13. Wang LH, Huang WS. Electrochemical oxidation of cysteine at a film gold modified carbon fiber microelectrode its application in a flow-through voltammetric sensor. Sensors 2012; 12: 3562-3577. doi: 10.3390/s120303562
  • 14. Aldini G, Altomare A, Baron G, Vistoli G, Carini M et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radical Research 2018; 52:751–762. doi: 10.1080/10715762.2018.1468564
  • 15. Stivers JT, Abeygunawardana C, Mildvan AS, Hajipour G, Whitman CP. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues. Biochemistry 1996; 35: 814-823. doi: 10.1021/bi9510789
  • 16. Sham YY, Chu ZT, Warshel A. Consistent calculations of pKa’s of ionizable residues in proteins: semi-microscopic and microscopic approaches. Journal of Physical Chemistry B 1997; 101: 4458-4472. doi: 10.1021/jp963412w
  • 17. Repic M, Purg M, Vianello R, Mavri J. Examining electrostatic preorganization in monoamine oxidases A and B by structural comparison and pKa calculations. Journal of Physical Chemistry B 2014; 118: 4326-4332. doi: 10.1021/jp500795p
  • 18. White PC, Lawrence NS, Tsai YC, Davis J, Compton RG. Electrochemically driven derivatisation-detection of cysteine. Microchimica Acta 2001; 137: 87-91. doi: 10.1007/s006040170
  • 19. Proková B, Heyrovský M. Voltammetric evidence of interfacial interactions between folates and thiols. Bioelectrochemistry and Bioenergetics 1996; 41: 209-212. doi: 10.1016/S0302-4598(96)05099-4.
  • 20. Heyrovský M, Proková B. Heterogeneous physico-chemical interactions following electrode reaction: interaction of folates with thiols. Collection of Czechoslovak Chemical Communications 1997; 62: 172-184. doi: 10.1135/cccc19970172
  • 21. Lawrence NS, Davis J, Compton RG, Compton RG. Electrochemical detection of thiols in biological media. Talanta 2001; 53: 1089-1094. doi: 10.1016/S0039-9140(00)00579-8
  • 22. Hignett G, Threlfell S, Wain AJ, Lawrence NS, Wilkins SJ et al. Electroanalytical exploitation of quinone–thiol interactions: application to the selective determination of cysteine. Analyst 2001; 126: 353-357. doi: 10.1039/B008616I
  • 23. White PC, Lawrence NS, Davis J, Compton RG. Electrochemically initiated 1,4 additions: a versatile route to the determination of thiols. Analytica Chimica Acta 2001; 447: 1-10. doi: 10.1016/S0003-2670(01)01297-1.
  • 24. White PC, Lawrence NS, Davis J, Compton RG. Electrochemical determination of thiols: a perspective. Electroanalysis 2002; 14: 89-98. doi: 10.1002/1521-4109(200201)14:23.0.CO;2-Y
  • 25. Biçer E, Çetinkaya P. A voltammetric study on the interaction of novobiocin with cysteine: pH effect. Journal of the Chilean Chemical Society 2009; 54: 46-50. doi: 10.4067/S0717-97072009000100011
  • 26. Biçer E, Coşkun E. Voltammetric study of the interaction between oxacillin sodium and cysteine in the presence and absence of Mn(II) ions in neutral buffer solution. Journal of the Serbian Chemical Society 2007; 72: 1003-1013. doi: 10.2298/JSC0710003B
  • 27. Çınar E, Biçer E. Voltammetric and spectroscopic studies on the interaction of pentoxifylline with cysteine in the presence and absence of UV irradiation. Zeitschrift für Physikalische Chemie 2005; 219: 817-830. doi: 10.1524/zpch.219.6.817.65709
  • 28. Biçer E, Özdemir N. In vitro study of the interaction of cysteine with a thiazide diuretic (hydrochlorothiazide) at different pH by voltammetric and spectroscopic techniques. Russian Journal of Electrochemistry 2013; 49: 948-954. doi: 10.1134/S1023193513100042
  • 29. Biçer E, Nuertayi P. Voltammetric, spectroscopic and thermal investigations of the interaction of levofloxacin with cysteine at physiological pH. Russian Journal of Electrochemistry 2017; 53: 469-478. doi: 10.1134/S1023193517050044
  • 30. Delrivo A, Zoppi A, Granero G, Longhi M. Studies of ternary systems of sulfadiazine with β -cyclodextrin and amino acids. Ars Pharmaceutica 2016; 57: 167-176. doi: 10.4321/S2340-98942016000400003
  • 31. Yiwei W, Xiaoqin Z, Jun D, Song H, Jianmin G. Studies on interactions between sulfadiazine and peptide amides. Biotechnology 2015; 14: 233-240. doi: 10.3923/biotech.2015.233.240
  • 32. Sonu VK, Rajkumar I, Bhattacharjee K, Joshi SR, Mitra S. Interaction of caffeine and sulfadiazine with lysozyme adsorbed at colloidal metal nanoparticle interface: influence on drug transport ability and antibacterial activity. Journal of Biomolecular Structure and Dynamics 2018; 36: 321-335. doi: 10.1080/07391102.2018.1426497
  • 33. Fotouhi L, Hashkavayi AB, Heravi MM. Interaction of sulfadiazine with DNA on a MWCNT modified glassy carbon electrode: determination of DNA. International Journal of Biological Macromolecules 2013; 53: 101-106. doi: 10.1016/j.ijbiomac.2012.11.021
  • 34. Islam MM, Moyon NS, Gashnga PM, Mitra S. Interaction of sulfadiazine with model water soluble proteins: a combined fluorescence spectroscopic and molecular modeling approach. Journal of Fluorescence 2014; 24: 579-588. doi: 10.1007/s10895-013-1330-7
  • 35. Zoppi A, Delrivo A, Aiassa V, Longhi MR. Binding of sulfamethazine to β -cyclodextrin and methyl-β -cyclodextrin. American Association of Pharmaceutical Scientists 2013; 14: 727735. doi: 10.1208/s12249-013-9958-9
  • 36. Mascini M, Bagni G, Di Pietro ML, Ravera M, Baracco S et al. Electrochemical biosensor evaluation of the interaction between DNA and metallo-drugs Biometals 2006; 19: 409-418. doi: 10.1007/s10534-005-4340-3
  • 37. Aleksić MM, Kapetanovic V. An overview of the optical and electrochemical methods for detection of DNA – drug interactions. Acta Chimica Slovenica 2014; 61: 555-573.
  • 38. Zhao J, Zheng X, Xing W, Huang J, Li G. Electrochemical studies of camptothecin and its interaction with human serum albumin. International Journal of Molecular Sciences 2007; 8: 42-50. doi: 10.3390/i8010042
  • 39. Omanović D, Branica M. Automation of voltammetric measurements by polarographic analyser PAR 384B. Croatica Chemica Acta 1998; 71: 421-433.
  • 40. Wavefunction, Inc. Spartan08 for Windows. Irvine, CA, USA: Wavefunction, Inc., 2008
  • 41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 09 C.01. Wallingford, CT, USA: Gaussian, Inc., 2009.
  • 42. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical Review 1965; 140: A1133-A1138. doi: 10.1103/PhysRev.140.A1133
  • 43. Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 1988; 38: 3098-3100. doi: 10.1103/PhysRevA.38.3098
  • 44. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics 1993; 98: 5648-5652. doi: 10.1063/1.464913
  • 45. Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics 2008; 10: 6615-6620. doi: 10.1039/B810189B
  • 46. Dennington R, Keith T, Millam J. GaussView 5.0.9 Shawnee Mission, KS, USA: Semichem, Inc., 2009.
  • 47. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988; 37: 785-789. doi: 10.1103/PhysRevB.37.785
  • 48. Tomasi J, Mennucci B, Cancès E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. Journal of Molecular Structure (Theochem) 1999; 464: 211-226. doi: 10.1016/S0166-1280(98)00553-3
  • 49. Bellú S, Hure E, Trapé M, Rizotto M. The interaction between mercury(II) and sulfathiazole. Quimica Nova 2003; 26: 188-192. doi: 10.1590/S0100-40422003000200008
  • 50. Bashammakh AS. Differential pulse-adsorptive cathodic stripping voltammetric determination of sulfadiazine drug in pharmaceutical formulations and drug residue in wastewater at a hanging mercury dropping electrode. Arabian Journal for Science and Engineering 2017; 42: 183-192. doi: 10.1007/s13369-016-2195-2
  • 51. Hills GJ. Electrochemistry, Vol. 3. London, UK: Royal Society of Chemistry, 1973.
  • 52. Cottrell PT, Mann CK. Electrochemical reduction of arylsulfonamides. Journal of the American Chemical Society 1971; 93: 3579-3583. doi: 10.1021/ja00744a006
  • 53. Manousec O, Exner O, Zuman P. Fission activated carbon-nitrogen and carbon-sulphur bonds, XI., Polarographic reduction of substituted benzenesulphonamides. In: Zuman P (editor). Topics in Organic Polarography. London, UK: Plenum Press, 1970, p. 324.
  • 54. Heyrovský M, Mader P, Vavřička S, Veselá V, Fedurco M. The anodic reactions at mercury electrodes due to cysteine. Journal of Electroanalytical Chemistry 1997; 430: 103-117. doi: 10.1016/S0022-0728(97)00103-4
  • 55. Heyrovský M, Vavřička S. Adsorption effects of electroactive species in d.c. polarography demonstrated in the case of the anodic waves of cysteine. Journal of Electroanalytical Chemistry 1997; 423: 125-130. doi: 10.1016/S0022- 0728(96)04691-8
  • 56. Gowda BG, Mallappa M, Shivakumar A, Sharma J. Electrochemical and spectroscopic studies on the interaction of ketoconazole with herring sperm DNA. Der Pharma Chemica 2014; 6: 256-264.
  • 57. Harding SE, Rowe AJ. Insight into protein–protein interactions from analytical ultracentrifugation. Biochemical Society Transactions 2010; 38: 901-907. doi: 10.1042/BST0380901
  • 58. Braun-Sand S, Strajbl M, Warshel A. Studies of proton translocations in biological systems: simulating proton transport in carbonic anhydrase by EVB-based models. Biophysical Journal 2004; 87: 2221-2239. doi: 10.1529/biophysj.104.043257
  • 59. Riendeau D, Percival MD, Brideau C, Charleson S, Dube D et al. Etoricoxib (MK-0663): Preclinical Profile and comparison with other agents that selectively inhibit cyclooxygenase-2. Journal of Pharmacology and Experimental Therapeutics 2001; 296: 558-566.
  • 60. Leś A, Adamowicz L, Rode W. Modeling of reaction steps relevant to deoxyuridylate (dUMP) enzymatic methylation and thymidylate synthase mechanism-based inhibition. Journal of Biomolecular Structure Dynamics 1998; 15: 703-715. doi: 10.1080/07391102.1998.10508986
  • 61. Wójcik A, Naumov S, Marciniak B, Hermann R, Brede O. Thiyl radical interaction with pyrimidine C5−C6 double bond. Journal of Physical Chemistry B 2005; 109: 15135-15144. doi: 10.1021/jp051711s
  • 62. Smith KC, Aplin RT. A mixed photoproduct of uracil and cysteine (5-S-cysteine-6-hydrouracil). A possible model for the in vivo cross-linking of deoxyribonucleic acid and protein by ultraviolet light. Biochemistry 1966; 5: 2125- 2130. doi: 10.1021/bi00870a046
  • 63. Cuervo C, González J, Rives V, Vicente MA. Characterization of a sulfadiazine-induced lithiasis calculus by physicochemical techniques. AAPS PharmSciTech 2013; 14: 128-132. doi: 10.1208/s12249-012-9892-2
  • 64. Pawlukojć A, Leciejewicz J, Ramirez-Cuesta AJ, Nowicka-Scheibe J. L-Cysteine: neutron spectroscopy, Raman, IR and ab initio study. Spectrochimica Acta Part A 2005; 61: 2474-2481. doi: 10.1016/j.saa.2004.09.012
  • 65. Parker SF. Assignment of the vibrational spectrum of l-cysteine. Chemical Physics 2013; 424: 75-79. doi: 10.1016/j.chemphys.2013.04.020
  • 66. Gunasekaran S, Bright A, Renuga Devi TS, Arunbalaji R, Anand G et al. Experimental and semi-empirical computations of the vibrational spectra of methionine, homocysteine and cysteine. Archives of Physics Research 2010; 1: 12-26.
  • 67. Oanca G, Stare J, Mavri J. How fast monoamine oxidases decompose adrenaline? Kinetics of isoenzymes A and B evaluated by empirical valence bond simulation. Proteins 2017; 85: 2170-2178. doi: 10.1002/prot.25374
  • 68. Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1934; 1: 104-113 (in German). doi: 10.1016/S0031-8914(34)90011-2
  • 69. Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory. Chemical Reviews 2003; 103: 1793-1874. doi: 10.1021/cr990029p
  • 70. Mulliken RS. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. Journal of Chemical Physics 1934; 2: 782-793. doi: 10.1063/1.1749394
  • 71. Pearson RG. Recent advances in the concept of hard and soft acids and bases. Journal of Chemical Education 1987; 64: 561-567. doi: 10.1021/ed064p561
  • 72. Parr RG, Chattaraj PK. Principle of maximum hardness. Journal of the American Chemical Society 1991; 113: 1854-1855. doi: 10.1021/ja00005a072
  • 73. Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 1983; 105: 7512-7516. doi: 10.1021/ja00364a005
  • 74. Parr RG, von Szentpaly L, Liu S. Electrophilicity-based charge transfer descriptor. Journal of the American Chemical Society 1999: 121: 1922-1924. doi: 10.1021/jp0649549
  • 75. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK. Electrophilicity-based charge transfer descriptor. Journal of Physical Chemistry A 2007; 111: 1358-1361. doi: 10.1021/jp0649549
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK