A comparative study of silver electrodeposition from pyrophosphate-cyanide and high concentration cyanide electrolytes in the presence of brighteners

A comparative study of silver electrodeposition from pyrophosphate-cyanide and high concentration cyanide electrolytes in the presence of brighteners

A study of the electrodeposition of silver from 2 different types of electrolytes; (1) neutral pyrophosphatecyanide electrolyte and (2) alkaline high concentrated cyanide electrolyte in the presence of a variety of additives suchas 2-mercaptobenzothiazole, potassium selenocyanate, and potassium antimony tartrate was performed. Influenceof additives and cyanide concentration on microstructure and kinetics of the cathodic processes were studied. Abrightener couple, 2-mercaptobenzothiazole and potassium antimony tartrate, were combined within this investigationand detected to be highly effective for silver electrodeposition. The rapid increase in current density at the same potentialinterval related to grain refinement effect of potassium antimony tartrate was shown. The cyclic organic compound, 2-mercaptobenzothiazole, polarizes the reduction to high cathodic potential in pyrophosphate electrolyte. However, thesufficient levelling effect required for the mirror-bright appearance seems to be related to the high polarizing effect of thehigh concentration cyanide content. In the case of pyrophosphate electrolytes, sufficient levelling cannot be achieved,so semigloss coatings are obtained. The low cathodic potential electrodeposition of silver in pyrophosphate electrolyte,which is found to proceed by 3D instantaneous nucleation, is polarized to high cathodic potentials and grows into 3Dprogressive nucleation and diffusion-controlled growth in high concentration cyanide electrolyte.

___

  • 1. Zarkadas G M, Stergiou A, Papanastasiou G. Influence of citric acid on the silver electrodeposition from aqueous AgNO3 solutions. Electrochimica Acta 2005; 50 (25-26): 5022-5031. doi: 10.1016/j.electacta.2005.02.081
  • 2. Zarkadas G M, Stergiou A, Papanastasiou G. Silver electrodeposition from AgNO3 solutions containing organic additives: electrodeposition from binary water–methanol solvent systems in the presence of tartaric acid. Journal of Applied Electrochemistry 2004; 34 (6): 607-615. doi: 10.1023/B:JACH.0000021920.59845.4c
  • 3. Popov KI, Živković PM, Nikolić ND. Formation of disperse silver deposits by the electrodeposition processes at high overpotentials. International Journal of Electrochemical Science 2012; 7 (1): 686-696.
  • 4. Dimitrov AT, Jordanov SH, Popov KI, Pavlovic MG, Radmilovic V. Electrodeposition of Ag from nitrate solutions: Part I. Effect of phosphate ions on morphology. Journal of Applied Electrochemistry 1998; 28 (8): 791-796. doi: 10.1023/A:1003462924591
  • 5. Xie BG, Sun JJ, Lin ZB, Chen GN. Electrodeposition of mirror-bright silver in cyanide-free bath containing uracil as complexing agent without a separate strike plating process. Journal of Electrochemical Society 2009; 156 (3): D79-D83. doi: 10.1149/1.3046157
  • 6. Reents B, Plieth W, Macagno VA, Lacconi GI. Influence of thiourea on silver deposition: spectroscopic investigation. Journal of Electroanalytical Chemistry 1998; 453 (1-2): 121-127. doi: 10.1016/S0022-0728(98)00217-4
  • 7. Lin ZB, Xie BG, Chen JS, Sun JJ, Chen GN. Nucleation mechanism of silver during electrodeposition on a glassy carbon electrode from a cyanide-free bath with 2-hydroxypyridine as a complexing agent. Journal of Electroanalytical Chemistry 2009; 633 (1): 207-211. doi: 10.1016/j.jelechem.2009.05.015
  • 8. Lin ZB, Tian JH, Xie BG, Tang YA, Sun JJ et al. Electrochemical and in situ SERS studies on the adsorption of 2-hydroxypyridine and polyethyleneimine during silver electroplating. Journal of Physical Chemistry C 2009; 113 (21): 9224-9229. doi: 10.1021/jp809761f
  • 9. Liu A, Ren X, Wang B, Zhang J, Yang P et al. Complexing agent study via computational chemistry for environmentally friendly silver electrodeposition and the application of silver deposit. RSC Advances 2014; 4 (77): 40930-40940. doi: 10.1039/C4RA05869K
  • 10. Liu A, Ren X, An M. A composite additive used for a new cyanide-free silver plating bath (II): an insight by electrochemical measurements and quantum chemical calculation. RSC Advances 2017; 41 (19): 11104-11112. doi: 10.1039/c7nj02638b
  • 11. Saitou M, Ota T, Nakano A, Hossain SA. Electrodeposition of silver thin films with shiny appearances from an electrolyte comprising silver ferrocyanide–thiocyanate and antimony potassium tartrate. Surface and Coatings Technology 2007; 201 (16-17): 6947-6952. doi: 10.1016/j.surfcoat.2006.12.024
  • 12. Krastev I, Zielonka A, Nakabayashi S, Inokuma K. A cyclic voltammetric study of ferrocyanide-thiocyanate silver electrodeposition electrolyte. Journal of Applied Electrochemistry 2001; 31 (9): 1041-1047. doi: 10.1023/A:1017943327755
  • 13. Ceblin MU, Zeller S, Schick B, Kibler LA, Jacob T. Electrodeposition of Ag onto Au (111) from deep eutectic solvents. ChemElectroChem 2019; 6 (1): 141-146. doi: 10.1002/celc.201801192
  • 14. Garich H, Taylor EJ, Peng T, Davis J, Tench DM. Silver electrodeposition from room temperature ionic liquid electrolytes. ECS Transactions 2018; 85 (4): 121-131: doi: 10.1149/08504.0121ecst
  • 15. Sousa NG, Sousa CP, Campos OS, de Lima-Neto P, Correia AN. One-step preparation of silver electrodeposits from non-aqueous solvents. Journal of Molecular Liquids 2019; 288: 111091. doi: 10.1016/j.molliq.2019.111091
  • 16. Hrussanova A, Krastev I, Beck G, Zielonka A. Properties of silver-tin alloys obtained from pyrophosphatecyanide electrolytes containing EDTA salts. Journal of Applied Electrochemistry 2010; 40 (12): 2145-2151. doi: 10.1007/s10800-010-0196-5
  • 17. Nineva SL, Dobrovolska TV, Krastev IN. Electrodeposition of Silver-Cobalt Coatings. Electrolytes. Bulgarian Chemical Communications 2011; 43 (1): 88-95.
  • 18. Sánchez H, Chainet E, Nguyen B, Ozil P, Meas Y. Electrochemical deposition of silver from a low cyanide concentration bath. Journal of the Electrochemical Society 1996; 143 (9): 2799-2804. doi: 10.1149/1.1837110
  • 19. Akben K, Timur S. A study on gold-silver alloy electrodeposition from pyrophosphate-cyanide electrolyte using polyethylenimine-KSeCN additives. International Journal of Electrochemical Science 2018; 13 (4): 3855-3873. doi: 10.20964/2018.04.07
  • 20. Fletcher A, Moriarty WL. Low free cyanide high purity silver electroplating bath and method. 1979; U.S. Patent No. 4155817.
  • 21. Foulke DG. Electrodeposition of silver. 1968; U.S. Patent No. 3362895.
  • 22. Okubo T, Mori Y, Kasai S. High-speed silver plating and baths therefor. 1986; U.S. Patent No. 4614568.
  • 23. Kohl AP. Electrodeposition of gold. In: Schlesinger M, Paunovic M (editors). Modern Electroplating. New Jersey, USA: John Wiley & Sons Inc, 2010, pp. 115-130.
  • 24. Ogihara Y, Wakabayashi S. Silver electroplating solution. 2008; U.S. Patent No. 7402232.
  • 25. Choi J, Kim MJ, Ahn SH, Choi I, Jang JH et al. Electrochemical CO2 reduction to CO on dendritic Ag-Cu electrocatalysts prepared by electrodeposition. Chemical Engineering Journal 2016; 299: 37-44. doi: 10.1016/j.cej.2016.04.037
  • 26. Bernasconi R, Hart JL, Lang AC, Magagnin L, Nobili L et al. Structural properties of electrodeposited Cu-Ag alloys. Electrochimica Acta 2017; 251: 475-481. doi: 10.1016/j.electacta.2017.08.097
  • 27. Jeon Y, Choe S, Kim HC, Kim MJ, Kim JJ. Electrodeposition of Cu-Ag films in ammonia-based electrolyte. Journal of Alloys and Compounds 2019; 775: 639-646. doi: 10.1016/j.jallcom.2018.10.023
  • 28. Foyet A, Clauss M, Zhang-Beglinger W, Woertink J, Qin Y et al. Electroplating baths of silver and tin alloys 2016; U.S. Patent No. 9512529.
  • 29. Kim DH, Bang TJ, Oh JH, Son JH, Kim HK et al. Method for preparing tin-silver alloy plating solution and plating solution prepared by same. 2017; U.S. Patent No. 9657403.
  • 30. Gyozova A, Krastev I, Dobrovolska LPT. Electrodeposition and structure of binary alloys of silver, tin and antimony. Bulgarian Chemical Communications 2016; 48: 103-109.
  • 31. Wen X, Pan X, Wu L, Li R, Wang D et al. Preparation of textural lamellar tin deposits via electrodeposition. Applied Physics A 2017; 123 (6): 423. doi: 10.1007/s00339-017-0960-z
  • 32. Kim JW, Lee JY, Park SM. Effects of organic additives on zinc electrodeposition at iron electrodes studied by EQCM and in situ STM. Langmuir 2004; 20 (2): 459-466. doi: 10.1021/la0347556
  • 33. Oniciu L, Mureşan L. Some fundamental aspects of levelling and brightening in metal electrodeposition. Journal of Applied Electrochemistry 1991; 21 (7): 565-574. doi: 10.1007/BF01024843
  • 34. Akben K, Bakan E, Timur S. Silver Electrodeposition from low and high concentrated cyanide electrolytes containing potassium antimony tartrate. International Journal of Engineering Research & Technology 2016; 5 (02): 467-471. doi: 10.17577/IJERTV5IS020493.
  • 35. Liu A, Ren X, An M. A composite additive used for a new cyanide-free silver plating bath (II): an insight by electrochemical measurements and quantum chemical calculation. New Journal of Chemistry 2017; 41 (19): 11104- 11112. doi: 10.1039/C7NJ02638B.
  • 36. Gezerman AO, Çorbacıoğlu BD. 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, and thioglycolic acid in an electroless nickel-plating bath. Journal of Chemistry 2015; 2015. doi: 10.1155/2015/872516.
  • 37. Baker BC, Witt C, Wheeler D, Josell D, Moffat TP. Superconformal silver deposition using KSeCN derivatized substrates. Electrochemical and Solid-State Letters 2003; 6 (5): C67-C69. doi: 10.1149/1.1561280
  • 38. Baltrûnas G, Pakalnienë E. The mechanism of silver deposition and dissolution in cyanide electrolytes. Chemija 2002; 13 (1): 64-70.
  • 39. Baltrunas G, Drunga V. Influence of temperature on the surface state of silver in cyanide electrolytes. Soviet Electrochemistry 1992; 28 (7): 889-891.
  • 40. Nineva S, Dobrovolska T, Krastev I. Electrodeposition of silver-cobalt coatings. Bulgarian Chemical Communications 2008; 40: 248-253.
  • 41. Baltrūnas G. The mechanism of electrode process in the system silver/silver cyanide complexes. Electrochimica Acta 2003; 48 (24): 3659-3664. doi: 10.1016/S0013-4686(03)00487-0
  • 42. Abyaneh MY. Electrocrystallization: modeling and its application. In: Pletcher D, Tian Z-Q, Williams DE (editors). Developments in Electrochemistry. New Delhi, India: Times by Aptara Inc, 2014, pp. 49-64. doi: 10.1002/9781118694404.ch3
  • 43. Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation. Electrochimica Acta 1983; 28 (7): 879-889. doi: 10.1016/0013-4686(83)85163-9.