Preparation and characterization of form-stable phase change material/end-of-life tires composites for thermal energy storag

The management of end-of-life tires ELT waste gains importance in aspect of possible environmental and economic issues so the waste recycling becomes unavoidable. This study describes the fabrication and characterization of a new phase changing material PCM /ELT microcomposites that could be used in thermal energy storage. Paraffin together with the 4 fatty acids and ELT rubber powder are used as PCMs and as the supporting material, respectively. Paraffin/ELT composites are fabricated, as well, by the vacuum impregnation method in order to investigate the effect of the preparation method. The thermal, morphological, and chemical properties of the prepared PCM/ELT rubber microcomposites are determined with differential scanning calorimetry DSC , scanning electron microscopy SEM , and FTIR,respectively. Additionally, theeffectsofthePCMamountonthecompositematerialsareinvestigated. Asaresult of DSC results, the melting temperature and latent heat of the paraffin/ELT rubber microcomposites are determined as 37.2 °C and 80.79 J/g for direct impregnation method and 36.8 °C and 80.69 J/g for vacuum impregnation method, respectively. Based on the findings of this study, it can be claimed that PCM/ELT rubber microcomposites can be used as energy-saving materials in thermal energy storage applications.

___

  • 1. Fang G, Tang F, Cao L. Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renewable and Sustainable Energy Reviews 2014; 40: 237-259. doi: 10.1016/j.rser.2014.07.179
  • 2. Guo X, Huang Y, Cao J. Performance of a thermal energy storage composite by incorporating diatomite stabilized paraffin as phase change material. Energy and Buildings 2018; 158: 1257-1265. doi: 10.1016/j.enbuild.2017.11.032
  • 3. Acik G, Karabulut HRF, Altinkok C, Karatavuk AO. Synthesis and characterization of biodegradable polyurethanes made from cholic acid and l-lysine diisocyanate ethyl ester. Polymer Degradation and Stability, 2019; 165: 43-48. doi: 10.1016/j.polymdegradstab.2019.04.015
  • 4. Jain JP, Sokolsky M, Kumar N, Domb AJ, Fatty acid based biodegradable polymer. Polymer Reviews, 2008; 48(1): 156-191. doi: 10.1080/15583720701834232
  • 5. Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas, A. Progress in used tyres management in the European Union: a review. Waste Management 2012; 32 (10): 1742-1751. doi: 10.1016/j.wasman.2012.05.010
  • 6. Myhre M, Saiwari S, Dierkes W, Noordermeer J. Rubber recycling: chemistry, processing, and applications. Rubber Chemistry and Technology 2012; 85 (3): 408-449. doi: 10.5254/rct.12.87973
  • 7. Bressi S, Santos J, Giunta M, Pistonesi L, Presti DL. A comparative life-cycle assessment of asphalt mixtures for railway sub-ballast containing alternative materials. Resources, Conservation and Recycling 2018; 137: 76-88. doi: 10.1016/j.resconrec.2018.05.028
  • 8. Sienkiewicz M, Janik H, Borzędowska-Labuda K, Kucińska-Lipka J. Environmentally friendly polymer-rubber composites obtained from waste tyres: a review. Journal of Cleaner Production 2017; 147: 560-571. doi: 10.1016/j.jclepro.2017.01.121
  • 9. Torretta V, Rada EC, Ragazzi M, Trulli E, Istrate IA et al. Treatment and disposal of tyres: two EU approaches. a review. Waste Management 2015; 45: 152-160. doi: 10.1016/j.wasman.2015.04.018
  • 10. Ghofrani M, Ashori A, Rezvani MH, Ghamsari FA. Acoustical properties of plywood/waste tire rubber composite panels. Measurement 2016; 94: 382-387.
  • 11. Garcia D, Lopez J, Balart R, Ruseckaite RA, Stefani PM. Composites based on sintering rice husk–waste tire rubber mixtures. Materials & Design 2007; 28 (7): 2234-2238. doi: 10.1016/j.measurement.2016.08.020
  • 12. Diaconescu RM, Barbuta M, Harja M. Prediction of properties of polymer concrete composite with tire rubber using neural networks. Materials Science and Engineering: B 2013; 178 (19): 1259-1267. doi: 10.1016/j.mseb.2013.01.014
  • 13. Song S, Dong L, Chen S, Xie H, Xiong C. Stearic–capric acid eutectic/activated-attapulgiate composite as formstable phase change material for thermal energy storage. Energy Conversion and Management 2014; 81: 306-311. doi: 10.1016/j.enconman.2014.02.045
  • 14. Chen F, Wolcott M. Polyethylene/paraffin binary composites for phase change material energy storage in building: a morphology, thermal properties, and paraffin leakage study. Solar Energy Materials and Solar Cells 2015; 137: 79-85. doi: 10.1016/j.solmat.2015.01.010
  • 15. Tang B, Wang L, Xu Y, Xiu J, Zhang S. Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage. Solar Energy Materials and Solar Cells 2016; 144: 1-6. doi: 10.1016/j.solmat.2015.08.012
  • 16. Fang G, Tang F, Cao L. Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renewable and Sustainable Energy Reviews 2014; 40: 237-259. doi: 10.1016/j.rser.2014.07.179
  • 17. Nomura T, Okinaka N, Akiyama T. Impregnation of porous material with phase change material for thermal energy storage. Materials Chemistry and Physics 2009; 115 (2-3): 846-850. doi: 10.1016/j.matchemphys.2009.02.045
  • 18. Tang Y, Su D, Huang X, Alva G, Liu L et al. Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity. Applied Energy 2016; 180: 116-129. doi: 10.1016/j.apenergy.2016.07.106
  • 19. Konuklu, Y, Ersoy O. Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Solar Energy Materials and Solar Cells 2017; 168: 130-135. doi: 10.1016/j.solmat.2017.04.019
  • 20. Konuklu Y, Ersoy O. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage. Applied Thermal Engineering 2016; 107: 575-582. doi: 10.1016/j.applthermaleng.2016.07.012
  • 21. Konuklu Y, Ersoy O, Gokce O. Easy and industrially applicable impregnation process for preparation of diatomitebased phase change material nanocomposites for thermal energy storage. Applied Thermal Engineering 2015; 91: 759-766. doi: 10.1016/j.applthermaleng.2015.08.040
  • 22. Guo X, Huang Y, Cao J. Performance of a thermal energy storage composite by incorporating diatomite stabilized paraffin as phase change material. Energy and Buildings, 2018; 158: 1257-1265. doi: 10.1016/j.enbuild.2017.11.032
  • 23. Mitran RA, Berger D, Matei C. Improving thermal properties of shape-stabilized phase change materials containing lauric acid and mesocellular foam silica by assessing thermodynamic properties of the non-melting layer. Thermochimica Acta 2018; 660: 70-76. doi: 10.1016/j.tca.2017.12.019
  • 24. Konuklu Y. Yalıtım PlakasıOlarak Ömrünü Tamamlamiş Lastik/Faz Değiştiren Madde Kompozit Üretim Yöntemi, Application No: 2017/03493. Ankara, Turkey: Turkish Patent and Trademark Office; 2017.
  • 25. Maleki M, Ahmadi PT, Mohamdi H, Karimian H, Ahmadi R et al. Photo-thermal conversion structure by infiltration of paraffin in three dimensionally interconnected porous polystyrene-carbon nanotubes (PS-CNT) polyHIPE foam. Solar Energy Materials and Solar Cells, 2019; 191: 266-274. doi: 10.1016/j.solmat.2018.11.022
  • 26. Karabork F, Pehlivan E, Akdemir A. Characterization of styrene butadiene rubber and microwave devulcanized ground tire rubber composites. Journal of Polymer Engineering 2014; 34 (6): 543-554. doi: 10.1515/polyeng-2013- 0330
  • 27. Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Applied Energy 2013; 105: 229-237. doi: 10.1016/j.apenergy.2013.01.005
  • 28. Zeng JL, Zheng SH, Yu SB, Zhu FR, Gan J et al. Preparation and thermal properties of palmitic acid/polyaniline/ exfoliated graphite nanoplatelets form-stable phase change materials. Applied Energy 2014; 115: 603-609. doi: 10.1016/j.apenergy.2013.10.061
  • 29. Qu M, Guo C, Li L, Zhang X. Preparation and investigation on tetradecanol and myristic acid/cellulose form-stable phase change material. Journal of Thermal Analysis and Calorimetry 2017; 130 (2): 781-790.
  • 30. Shanmugharaj AM, Kim JK, Ryu SH. UV surface modification of waste tire powder: characterization and its influence on the properties of polypropylene/waste powder composites. Polymer Testing 2005; 24 (6): 739-745.
  • 31. Zhang JL, Chen HX, Ke CM, Zhou Y, Lu HZ et al. Graft polymerization of styrene onto waste rubber powder and surface characterization of graft copolymer. Polymer Bulletin 2012; 68 (3): 789-801. doi: 10.1007/s00289-011-0586-9
  • 32. Konuklu Y, Ersoy O. Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Solar Energy Materials and Solar Cells 2017; 168, 130-135. doi: 10.1016/j.solmat.2017.04.019
  • 33. Konuklu Y, Erzin F, Akar HB, Turan A. Cellulose-based myristic acid composites for thermal energy storage applications. Solar Energy Materials and Solar Cells 2019; 193: 85-91. doi: 10.1016/j.solmat.2019.01.006