Phenolic compounds, essential oil composition, and antioxidant activity of Angelica purpurascens (Avé-Lall.) Gill

Phenolic compounds, essential oil composition, and antioxidant activity of Angelica purpurascens (Avé-Lall.) Gill

In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography− tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities $(IC_{50}$: 0.05 ± 0.0001 mg/mL, $IC_{50}$: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity $(IC_{50}$: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.

___

  • 1. Yang CS, Ho CT, Zhang J, Wan X, Zhang K et al. Antioxidants: differing meanings in food science and health science. Journal of Agricultural and Food Chemistry 2018; 66 (12): 3063-3068. doi: 10.1021/acs.jafc.7b05830
  • 2. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Research and Health 2003; 27 (4): 277-284. doi: 10.1079/ pns2006496
  • 3. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M et al. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology 2007; 39 (1): 44-84. doi: 10.1016/j.biocel.2006.07.001
  • 4. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. International Journal of Biomedical Science 2008; 4 (2): 89-96.
  • 5. Badarinath AV, Mallikarjuna Rao K, Madhu Sudhana Chetty C, Ramkanth S, Rajan TVS et al. A review on in-vitro antioxidant methods: comparisons, correlations and considerations. International Journal of PharmTech Research 2010; 2 (2): 1276-1285.
  • 6. Rahman T, Hosen I, Islam MMT, Shekhar HU. Oxidative stress and human health. Advances in Bioscience and Biotechnology 2012; 3 (7): 997-1019. doi: 10.4236/abb.2012.327123
  • 7. Oliveira BF, Nogueira-Machado JA, Chaves MM. The role of oxidative stress in the aging process. The Scientific World Journal 2010; 10: 1121-1128. doi: 10.1100/tsw.2010.94
  • 8. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews 2010; 4 (8): 118-126. doi: 10.4103/0973-7847.70902
  • 9. Shahidi F, Ho CT. Antioxidant measurement and applications: an overview. In: Shahidi F, Ho CT (editors). Antioxidant Measurement and Applications. Washington, DC: American Chemical Society, 2007, pp. 2-7.
  • 10. Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019; 24 (22): 4132. doi: 10.3390/molecules24224132
  • 11. Güner A, Aslan S, Ekim T, Vural M, Babaç MT. Türkiye Bitkileri Listesi (Damarlı Bitkiler). İstanbul, Türkiye: Nezahat Gökyiğit Botanik Bahçesi, 2012 (in Turkish).
  • 12. Hamzaoğlu E, Koç M. A new gigantic species from Turkey, Angelica turcica (Umbelliferae). Phytotaxa 2016; 245 (1): 66-70. doi: 10.11646/ phytotaxa.245.1.7
  • 13. Shawky E, Abou El Kheir RM. Rapid discrimination of different Apiaceae species based on HPTLC fingerprints and targeted flavonoids determination using multivariate image analysis. Phytochemical Analysis 2018; 29 (5): 452-462. doi: 10.1002/pca.2749
  • 14. Seigler DS. Coumarins. In: Seigler DS (editor). Plant Secondary Metabolism. Boston: Springer, 1998. pp. 130-138.
  • 15. Wang P, Su Z, Yuan W, Deng G, Li S. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharmaceutical Crops 2012; 3 (1): 99-120. doi: 10.2174/2210290601203010099
  • 16. Karakaya S, Bingol Z, Koca M, Dagoglu S, Pınar NM et al. Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential. Saudi Pharmaceutical Journal 2020; 28 (1):1-
  • 14. doi: 10.1016/j.jsps.2019.11.001
  • 17. Drew DP, Krichau N, Reichwald K, Simonsen HT. Guaianolides in apiaceae: Perspectives on pharmacology and biosynthesis. Phytochemistry Reviews 2009; 8 (3): 581-599. doi: 10.1007/s11101-009-9130-z
  • 18. Başer KHC, Kirimer N. Essential oils of anatolian apiaceae-A profile. Natural Volatiles and Essential Oils 2014; 1 (1): 1-50.
  • 19. Sousa RMOF, Rosa JS, Oliveira L, Cunha A, Fernandes-Ferreira M. Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Industrial Crops and Products 2015; 63: 226-237. doi: 10.1016/j.indcrop.2014.09.052
  • 20. Khoury M, El Beyrouthy M, Eparvier V, Ouaini N, Stien D. Chemical diversity and antimicrobial activity of the essential oils of four Apiaceae species growing wild in Lebanon. Journal of Essential Oil Research 2018; 30 (1): 25-31. doi: 10.1080/10412905.2017.1372314
  • 21. Lobiuc A, Zamfirache MM, Stratu A. Physiological aspects in two Angelica L. taxa (Apiaceae). Analele Stiintifice ale Universitatii” Al I Cuza” din Iasi 2012; 58 (2): 81.
  • 22. Nivinskiene O, Butkiene R, Mockutë D. Changes in the chemical composition of essential oil of Angelica archangelica L. roots during storage. Chemija (Vilnius) 2003; 14 (1): 52-56.
  • 23. Ağalar HG, Göger F, Demirci B, Malyer H, Kirimer N. Angelica sylvestris var. sylvestris L.: Essential oils and antioxidant activity evaluation. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering 2020; 21 (1): 39-48. doi: 10.18038/ estubtda.544889.
  • 24. Nikonov GK, Baranauskaite DI. Xanthogalin - A new coumarin from Xanthogalum purpurascens Lallem. Chemistry of Natural Compounds 1965; 1 (2): 110-111. doi: 10.1007/BF00568737
  • 25. Geidarov IG, Serkerov S V. Coumarins from roots of Angelica purpurascens. Chemistry of Natural Compounds 2017; 53 (1): 149-150. doi: 10.1007/s10600-017-1932-4
  • 26. Paola A, Alessandro P, Bertuzzi G, Venanzoni R. Some biological activities of essential oils. Medicinal and Aromatic Plants 2013; 2 (5): 1-4. doi: 10.4172/2167-0412.1000136
  • 27. Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA et al. Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine 2015; 5 (8): 601-611. doi: 10.1016/j.apjtb.2015.05.007
  • 28. Elshafie HS, Camele I. An overview of the biological effects of some mediterranean essential oils on human health. BioMed Research International 2017; 2017: 9268468. doi: 10.1155/2017/9268468
  • 29. Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. A review of the composition of the essential oils and biological activities of Angelica species. Scientia Pharmaceutica 2017; 85 (3): 33. doi: 10.3390/scipharm85030033
  • 30. Sokolova AI, Nikonov GK. Lactones of the fruit of Xanthogalum purpurascens. Chemistry of Natural Compounds 1969; 5 (4): 267. doi: 10.1007/BF00683849
  • 31. Özek G, Özek T, Baser KHC, Duran A, Sagiroglu M. Comparison of essential oil of Xanthogalum purpurascens Lallem. Obtained via different isolation techniques. Journal of Essential Oil Research 2006; 18 (2): 181-184. doi: 10.1080/10412905.2006.9699061
  • 32. Mahboubeh T, Shiva M, Abdolhossein R. Chemical composition and antibacterial activities of the essential oil of Iranian Xanthogalum purpurascens. Nashrieh Shimi Va Mohandesi Shimi Iran (Persian) 2013; 31 (3-4): 59-63.
  • 33. Karaçelik AA, Küçük M, Iskefiyeli Z, Aydemir S, De Smet S et al. Antioxidant components of Viburnum opulus L. determined by on-line HPLC-UV-ABTS radical scavenging and LC-UV-ESI-MS methods. Food Chemistry 2015; 175: 106-114. doi: 10.1016/j. foodchem.2014.11.085
  • 34. Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology 1999; 299: 15-27. doi: 10.1016/S0076-6879(99)99005-5
  • 35. Cuendet M, Hostettmann K, Potterat O, Dyatmiko W. Iridoid Glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta 1997; 80 (4): 1144-1152. doi: 10.1002/hlca.19970800411
  • 36. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 1999; 26 (9-10): 1231-1237. doi: 10.1016/S0891-5849(98)00315-3
  • 37. Slinkard K, Singleton V. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture 1977; 28: 49-55. doi: 10.1016/j.carbpol.2011.06.030
  • 38. Karaçelik AA, Sahin H. Determination of enzyme inhibition and antioxidant activity in some chestnut honeys. Foods and Raw Materials 2018; 6: 210-218. doi: 10.21603/2308-4057-2018-1-210-218
  • 39. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, Illinois: Allured Publishing Corporation, 2006.
  • 40. Heo BG, Park YS, Chon SU, Leed SY, Choe JY et al. Antioxidant activity and cytotoxicity of methanol extracts from aerial parts of Korean salad plants. BioFactors 2007; 30 (2): 79-89. doi: 10.1002/biof.5520300202
  • 41. Irshad M, Rehman H, Shahid M, Aziz S, Ghous T. Antioxidant, antimicrobial and phytotoxic activities of essential oil of Angelica glauca. Asian Journal of Chemistry 2011; 23 (5): 1947-1951.
  • 42. Pervin M, Abul Hasnat M, Debnath T, Park SR, Kim DH et al.Antioxidant, antiinflammatory and antiproliferative activity of Angelica dahurica root extracts. Journal of Food Biochemistry 2014; 38 (3): 281-292. doi: 10.1111/jfbc.12046
  • 43. Roh J, Shin S. Antifungal and antioxidant activities of the essential oil from Angelica koreana Nakai. Evidence-Based Complementary and Alternative Medicine 2014; 2014: 398503. doi: 10.1155/2014/398503
  • 44. Wei A, Shibamoto T. Antioxidant activities and volatile constituents of various essential oils. Journal of Agricultural and Food Chemistry 2007; 55 (5): 1737-1742. doi: 10.1021/jf062959x
  • 45. Huang SH, Chen CC, Lin, CM, Chiang, BH. Antioxidant and flavor properties of Angelica sinensis extracts as affected by processing. Journal of Food Composition and Analysis 2008; 21 (5): 402-409. doi: 10.1016/j.jfca.2008.02.005
  • 46. Senol FS, Woz´niak KS, Khan MTH, Orhan IE, Sener B et al. An in vitro and in silico approach to cholinesterase inhibitory and antioxidant effects of the methanol extract, furanocoumarin fraction, and major coumarins of Angelica officinalis L. fruits. Phytochemistry Letters 2011; 4 (4): 462-467. doi: 10.1016/j.phytol.2011.08.016
  • 47. Qin LQ, Luo SY, Zhan ZH, Liu XX, Wang K. Determination of antioxidant compounds from leaf and stem of Angelica keiskei by gas chromatography-mass spectrometry. Asian Journal of Chemistry 2014; 26 (16): 5097-5099. doi: 10.14233/ajchem.2014.16334
  • 48. StankovicN, Mihajilov-Krstev T, Zlatkovic B, Stankov-Jovanovic V, Mitic V et al. Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS-Wageningen Journal of Life Sciences 2016; 78: 21-28. doi: 10.1016/j.njas.2015.12.006
  • 49. Zhang L, Yu J, Xu Q, Zhu J, Zhang H et al. Evaluation of total phenolic, flavonoid, carbohydrate contents and antioxidant activities of various solvent extracts from Angelica amurensis root. Natural Product Research 2020; doi: 10.1080/14786419.2020.1716349
  • 50. Hassen I, Casabianca H, Hosni K. Biological activities of the natural antioxidant oleuropein: Exceeding the expectation – A mini-review. Journal of Functional Foods 2015; 18: 926-940. doi: 10.1016/j.jff.2014.09.001
  • 51. Kang J, Zhou L, Sun J, Han J, Guo DA. Chromatographic fingerprint analysis and characterization of furocoumarins in the roots of Angelica dahurica by HPLC/DAD/ESI-$MS^n$ technique. Journal of Pharmaceutical and Biomedical Analysis 2008; 47 (4-5): 778-785. doi: 10.1016/j. jpba.2008.03.010
  • 52. Kim DW, Curtis-Long MJ, Yuk HJ, Wang Y, Song YH et al. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition. Food Chemistry 2014; 153: 20-27. doi: 10.1016/j.foodchem.2013.12.026
  • 53. Mohammadhosseini M, Mahdavi B, Shahnama M. Chemical composition of essential oils from aerial parts of Ferula gummosa (Apiaceae) in Jajarm region, Iran using traditional hydrodistillation and solvent-free microwave extraction methods: A comparative approach. Journal of Essential Oil-Bearing Plants 2015; 18 (6): 1321-1328. doi: 10.1080/0972060X.2015.1024445
  • 54. Mohammadhosseini M, Sarker SD, Akbarzadeh A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. Journal of Ethnopharmacology 2017; 199: 257-315. doi: 10.1016/j.jep.2017.02.010
  • 55. Sokolova AI, Perel’son ME, Nikonov GK. Tomasin-A new coumarin from Xanthogalum purpurascens Lallem. Chemistry of Natural Compounds 1969; 5 (5): 299-300. doi: 10.1007/BF00595060
  • 56. Sokolova AI. Phytochemical study of coumarins of purple Xanthogalum roots. Trudy 1968; 1: 343-345.
  • 57. Başer KHC, Özek T, Kürkçüoglu M, Duman H, Aytaç Z. Composition of the essential oil of Xanthogalum purpurascens Lallem. Journal of Essential Oil Research 2001; 13 (3): 206-207. doi: 10.1080/10412905.2001.9699666
  • 58. Assadian F, Masoudi S, Nematollahi F, Rustaiyan A, Larijani K et al. Volatile constituents of Xanthogalum purpurascens Ave-lall., Eryngium caeruleum m.b. and Pimpinella aurea dc. three umbelliferae herbs growing in Iran. Journal of Essential Oil Research 2005; 17 (3): 243-245.doi: 10.1080/10412905.2005.9698889
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis, spectral characterization, and biological studies of 3,5-disubstituted1,3,4-oxadiazole-2(3H)-thione derivatives

Fikrettin ŞAHİN, Tuğçe ÖZYAZICI, Meriç KÖKSAL

Scalable activated carbon/graphene based supercapacitors with improved capacitance retention at high current densities

İ. Işıl GÜRTEN İNAL

Investigation of performances of commercial diesel oxidation catalysts for $CO,C_3H_6$, andNO oxidation

Deniz ŞANLI YILDIZ, Hande GÜNEŞ, Selmi Erim BOZBAĞ, Can ERKEY, Hüseyin Barkın ÖZENER, Gökhan HİSAR

Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes

Deniz İzlen ÇİFÇİ, Elçin GÜNEŞ, Yalçın GÜNEŞ, Ali Rıza DİNÇER

Graphene preparation and graphite exfoliation

Ahmed A. MOOSA, Mayyadah S. ABED

Phenolic compounds, essential oil composition, and antioxidant activity of Angelica purpurascens (Avé-Lall.) Gill

Mustafa KARAKÖSE, Semra ALKAN TÜRKUÇAR, Ayça AKTAŞ KARAÇELİK

High capacity gas capture and selectivity properties of triazatruxene-based ultramicroporous hyper-crosslinked covalent polymer

Ali Enis SADAK

UV-Visible spectroscopic study on multi-staged film formation mechanisms of graphene oxide-doped polystyrene latex (PS latex/GO) nanocomposites

Barış DEMİRBAY, Şaziye UĞUR, Asef ETEMADI

3-Hydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen-6-one and 3-hydroxy-6H-benzo[c] chromen-6-one act as on-off selective fluorescent sensors for Iron (III) under in vitro and ex vivo conditions

Rasime KALKAN, Karar SHUKUR, Mustafa GAZİ, Hayrettin Ozan GÜLCAN, Amirhossein FALLAH, Kerem TERALI

Synthesis, spectroscopic, thermal, crystal structure properties, and characterization ofnew Hofmann-$T_d$-type complexes with 3-aminopyridine

Zeki KARTAL, Onur ŞAHİN