Evaluation of the fuel cell performances of $TiO_2$ /PAN electrospun carbon-based electrodes

Evaluation of the fuel cell performances of $TiO_2$ /PAN electrospun carbon-based electrodes

Electrocatalytic effect of the untreated and $TiO_2$+polyacrylonitrile (PAN) modified discarded battery coal (DBC) and pencil graphite electrodes (PGE) were evaluated in fuel cell (FC) applications. $TiO_2$+PAN solution is coated on PGE and DBC electrodes by electrospinning. According to the FESEM and EDS characterizations, $TiO_2$and PAN nanofibers are found to be approximately 40 and 240 nm in size. $TiO_2$+PAN/PGE showed the best FC performances with 2.00 A cm–2 current density and 5.05 W cm–2 power density values, whereas $TiO_2$+PAN/DBC showed 0.68 A cm–2 current density and 0.62 W cm–2 power density values. Electrochemical characterizations of PGE and $TiO_2$+PAN/PGE electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Finally, long-term FC measurement results of developed electrodes exhibited very reasonable recovery values. Along with the comparison of the electrode performances, the recovery of DBCs as electrodes for renewable energy production has been achieved.

___

  • 1. Asmatulu R, Khan WS. Electrospun nanofibers for catalyst applications. In: Synthesis and Applications of Electrospun Nanofibers. Amsterdam, The Netherlands: Elsevier, 2019, pp. 153-173. https://doi.org/10.1016/B978-0-12-813914-1.00008-0.
  • 2. Kara H, Oylumluoglu G, Coban MB. Photoluminescence properties of a new Sm(III) Complex/PMMA electrospun composite fibers. Journal of Cluster Science 2020; 31: 701-708. https://doi.org/10.1007/s10876-019-01677-7.
  • 3. Ligon C, Latimer K, Hood ZD, Pitigala S, Gilroy KD et al. Electrospun metal and metal alloy decorated $TiO_2$ nanofiber photocatalysts for hydrogen generation. RSC Advances 2018; 8: 32865-32876. https://doi.org/10.1039/C8RA04148B.
  • 4. Cagil EM, Ozcan F, Ertul S. Fabrication of calixarene based protein scaffold by electrospin coating for tissue engineering. Journal of Nanoscience and Nanotechnology 2018; 18: 5292-5298. https://doi.org/10.1166/jnn.2018.15381.
  • 5. Chen G, Wang Y, Fan L, Xiong X, Zhu C et al. Electrospun CuWO4 nanofibers for visible light photocatalysis. Materials Letters 2019; 251: 23-25. https://doi.org/10.1016/j.matlet.2019.05.032.
  • 6. Oylumluoglu G, Coban MB, Kocak C, Aygun M, Kara H. 2-and 1-D coordination polymers of Dy(III) and Ho(III) with near infrared and visible luminescence by efficient charge-transfer antenna ligand. Jornal of Molecular Structure 2017; 1146: 356-364. https://doi.org/10.1016/j. molstruc.2017.06.020.
  • 7. Coban MB, Erkarslan U, Oylumluoglu G, Aygun M, Kara H. Hydrothermal synthesis, crystal structure and photoluminescent properties; 3D Holmium(III) coordination polymer. Inorganica Chimica Acta 2016; 447: 87-91. https://doi.org/10.1016/j.ica.2016.03.038.
  • 8. Tyagi A, Singh N, Sharma Y, Gupta RK. Improved supercapacitive performance in electrospun TiO2 nanofibers through Ta-doping for electrochemical capacitor applications. Catalysis Today 2019; 325: 33-40. https://doi.org/10.1016/j.cattod.2018.06.026.
  • 9. Wu K, Hu Y, Shen Z, Chen R, He X et al. Highly efficient and green fabrication of a modified C nanofiber interlayer for high-performance Li–S batteries. Journal of Materials Chemistry A 2018; 6: 2693-2699. https://doi.org/10.1039/C7TA09641K.
  • 10. Powers D, Wycisk R, Pintauro PN. Electrospun tri-layer membranes for H2/Air fuel cells. Journal of Membrane Science 2019; 573: 107-116. https://doi.org/10.1016/j.memsci.2018.11.046.
  • 11. Kong W, Zhang M, Han Z, Zhang Q. A theoretical model for the triple phase boundary of solid oxide fuel cell electrospun electrodes. Applied Science 2019; 9: 493. https://doi.org/10.3390/app9030493.
  • 12. Ahn M, Cho J, Lee W. One-step fabrication of composite nanofibers for solid oxide fuel cell electrodes. Journal of Power Sources 2019; 434: 226733. https://doi.org/10.1016/j.jpowsour.2019.226749.
  • 13. Cai T, Huang M, Huang Y, Zheng W. Enhanced performance of microbial fuel cells by electrospinning carbon nanofibers hybrid carbon nanotubes composite anode. International Journal of Hydrogen Energy 2019; 44: 3088-3098. https://doi.org/10.1016/j.ijhydene.2018.11.205.
  • 14. Oroujzadeh M, Etesami M, Mehdipour-Ataei S. Poly(ether ketone) composite membranes by electrospinning for fuel cell applications. Journal of Power Sources 2019; 434: 226733. https://doi.org/10.1016/j.jpowsour.2019.226733.
  • 15. Zizhou RE, Çay A, Akçakoca Kumbasar EP, Çolpan CÖ. Production of poly(vinyl alcohol)/Nafion® nanofibers and their stability assessment for the use in direct methanol fuel cells. Journal of Industrial Textiles 2019; 50 (6): 1-21. https://doi.org/10.1177/1528083719844611.
  • 16. Jian Fang TL, Wang X. Nanofibers-Production, Properties and Functional Applications. London, UK: InTech, 2011. https://doi. org/10.5772/916.
  • 17. Kurban Z, Lovell A, Jenkins D, Bennington S, Loader I et al. Turbostratic graphite nanofibres from electrospun solutions of PAN in dimethylsulphoxide. European Polymer Journal 2010; 46: 1194-1202. https://doi.org/10.1016/j.eurpolymj.2010.03.015.
  • 18. Padmavathi R, Sangeetha D. Synthesis and characterization of electrospun carbon nanofiber supported Pt catalyst for fuel cells. Electrochimica Acta 2013; 112: 1-13. https://doi.org/10.1016/j.electacta.2013.08.078.
  • 19. Zussman E, Chen X, Ding W, Calabri L, Dikin DA et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 2005; 41: 2175-2185. https://doi.org/10.1016/j.carbon.2005.03.031.
  • 20. Zhang X, Huang Y, Zhou X, Wang F, Luo Z et al. Characterizations of carbonized electrospun mats as diffusion layers for direct methanol fuel cells. Journal of Power Sources 2020; 448: 227410. https://doi.org/10.1016/j.jpowsour.2019.227410.
  • 21. Lai C, Kolla P, Zhao Y, Fong H, Smirnova A. Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells. Electrochimica Acta 2014; 130: 431-438. https://doi.org/10.1016/j.electacta.2014.03.006.
  • 22. Aydın H, Çelik SÜ, Bozkurt A. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics 2017; 309: 71-76. https://doi.org/10.1016/j.ssi.2017.07.004.
  • 23. Yousef A, Brooks RM, El-Newehy MH, Al-Deyab SS, Kim HY. Electrospun Co-TiC nanoparticles embedded on carbon nanofibers: Active and chemically stable counter electrode for methanol fuel cells and dye-sensitized solar cells. International Journal of Hydrogen Energy 2017;
  • 42: 10407-10415. https://doi.org/10.1016/j.ijhydene.2017.01.171.
  • 24. Rauf M, Wang JW, Zhang P, Iqbal W, Qu J et al. Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. Journal of Power Sources 2018; 408: 17-27. https://doi.org/10.1016/j. jpowsour.2018.10.074.
  • 25. Stassi A, Gatto I, Baglio V, Passalacqua E, Aricò AS. Investigation of Pd-based electrocatalysts for oxygen reduction in PEMFCs operating under automotive conditions. Journal of Power Sources 2013; 222: 390-399. https://doi.org/10.1016/j.jpowsour.2012.09.002.
  • 26. Gup R, Gökçe C, Dilek N. Seven-coordinated cobalt(II) complexes with 2,6-diacetylpyridine bis(4-hydroxybenzoylhydrazone): synthesis, characterisation, DNA binding and cleavage properties. Supramolecular Chemistry 2015, 27, 629-641. https://doi.org/10.1080/10610278.20 15.1051978
  • 27. Su C, Hong BY, Tseng CM. Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today 2004; 96: 119-126. https://doi. org/10.1016/j.cattod.2004.06.132
  • 28. O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991; 353: 737-740. https://doi.org/10.1038/353737a0.
  • 29. Ondersma JW, Hamann TW. Measurements and modeling of recombination from nanoparticle TiO 2 electrodes. Journal of American Chemical Society 2011; 133: 8264-8271. https://doi.org/10.1021/ja201333u.
  • 30. Elakkiya S, Arthanareeswaran G, Ismail AF, Das DB, Suganya R. Polyaniline coated sulfonated TiO 2 nanoparticles for effective application in proton conductive polymer membrane fuel cell. European Polymer Journal 2019; 112: 696-703. https://doi.org/10.1016/j. eurpolymj.2018.10.036.
  • 31. Drew K, Girishkumar G, Vinodgopal K, Kamat PV. Boosting fuel cell performance with a semiconductor photocatalyst: TiO 2/Pt-Ru hybrid catalyst for methanol oxidation. The Journal of Physical Chemistry B 2005; 24: 11851-11857. https://doi.org/10.1021/jp051073d.
  • 32. Shim J, Lee CR, Lee HK, Lee JS, Cairns EJ. Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell. Journal of Power Sources 2001; 102: 172-177. https://doi.org/10.1016/S0378-7753(01)00817-5.
  • 33. Yousef A, Brooks RM, El-Newehy MH, Al-Deyab SS, Kim HY. Electrospun Co-TiC nanoparticles embedded on carbon nanofibers: active and chemically stable counter electrode for methanol fuel cells and dye-sensitized solar cells. International Journal of Hydrogen Energy 2017; 42: 10407-10415. https://doi.org/10.1016/j.ijhydene.2017.01.171
  • 34. Mirshekari GR, Shirvanian AP. A comparative study on catalytic activity and stability of $TiO_2$ , TiN, and TiC supported Pt electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells environment. Journal of Electroanalytical Chemistry 2019; 840: 391–399. https://doi.org/10.1016/j.jelechem.2019.03.077
  • 35. Tański T, Matysiak W, Krzemiński Ł. Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers. Materials and Manufacturing Processes 2017; 32 (11): 1218-1224. http://dx.doi.org/10.1080/10426914.2016.1257129
  • 36. Qiao Y, Li CM, Bao SJ, Bao QL. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources 2007; 170: 79-84. https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jpowsour.2007.03.048
  • 37. Qiao Y, Bao SJ, Li CM, Cui XQ, Lu ZS et al. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2008; 2: 113-119. https://doi.org/10.1021/nn700102s
  • 38. Adachi M, Shimomura T, Komatsu M, Yakuwa H, Miya A. A novel mediator–polymer-modified anode for microbial fuel cells. Chemical Communications 2008; 7: 2055-2057. https://doi.org/10.1039/B717773A
  • 39. Chen S, He G, Carmona-Martinez AA, Agarwal S, Greiner A et al. Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells, Electrochemistry Communications 2011; 13: 1026-1029. https://www.researchgate.net/deref/http%3A%2F%2Fdx. doi.org%2F10.1016%2Fj.elecom.2011.06.009
  • 40. Špaček J, Eksin E, Havran L, Erdem A, Fojta M. Fast enzyme-linked electrochemical sensing of DNA hybridization at pencil graphite electrodes. Application to detect gene deletion in a human cell culture. Journal of Electroanalytical Chemistry 2020; 862: 113951. https:// doi.org/10.1016/j.jelechem.2020.113951.
  • 41. Gökçe G, Ben Aissa S, Nemčeková K, Catanante G, Raouafi N et al. Aptamer-modified pencil graphite electrodes for the impedimetric determination of ochratoxin A. Food Control 2020; 115: 107271. https://doi.org/10.1016/j.foodcont.2020.107271.
  • 42. Aslan S, Aka N, Karaoğlu MH. NaOH impregnated sepiolite based heterogeneous catalyst and its utilization for the production of biodiesel from canola oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2019; 41: 290-297. https://doi.org/10.1080/155 67036.2018.1516010.
  • 43. Bal Altuntaş D, Nevruzoğlu V, Dokumacı M, Cam Ş. Synthesis and characterization of activated carbon produced from waste human hair mass using chemical activation. Carbon Letters 2019; 30: 307-313. https://doi.org/10.1007/s42823-019-00099-9.
  • 44. Chen LC, Tien CH, Ou SL, Lee KY, Tian J et al. Perovskite CsPbBr 3 quantum dots prepared using discarded lead-acid battery recycled waste. Energies 2019; 12: 1117. https://doi.org/10.3390/en12061117.
  • 45. Yu W, Yang J, Li M, Hu Y, Liang S et al. A facile lead acetate conversion process for synthesis of high-purity alpha-lead oxide derived from spent lead-acid batteries. Journal of Chemical Technology & Biotechnology 2019; 94: 88-97. https://doi.org/10.1002/jctb.5748.
  • 46. Li L, Ge J, Wu F, Chen R, Chen S et al. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials 2010; 176: 288-293. https://doi.org/10.1016/j.jhazmat.2009.11.026.
  • 47. Aslan S, Bal Altuntaş D, Koçak Ç, Kara Subaşat H. Electrochemical evaluation of titanium (iv) oxide/polyacrylonitrile electrospun discharged battery coals as supercapacitor electrodes. Electroanalysis 2021; 33 (1): 120-128. 10.1002/elan.202060239.
  • 48. Aslan S. The usage of discarded battery coals as electrodes and improving their hydrogen gas production performances by impregnation with Zr and Ce metals. Eurasian Journal of Biological and Chemical Sciences 2019; 2: 97-101. http://dergipark.org.tr/en/pub/ejbcs/ issue/50501/597092
  • 49. Yin H, Wada Y., Kitamura T., Kambe S., Murasawa S et al. Hydrothermal synthesis of nanosized anatase and ruffle TiO2 using amorphous phase TiO2. Journal of Materials Chemistry 2001; 11: 1694-1703. https://doi.org/10.1039/b008974p.
  • 50. Li M, Han G, Yang B. Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats. Electrochemistry Communications 2008; 10: 880-883. https://doi.org/10.1016/j.elecom.2008.04.002.
  • 51. Wang H, Jiang Y, Manthiram A. Long cycle life, low self-discharge sodium-selenium batteries with high selenium loading and suppressed polyselenide shuttling. Advanced Energy Materials 2018; 8: 1701953. https://doi.org/10.1002/aenm.201701953.
  • 52. Yao S, Cui J, Huang J, Huang JQ, Chong WG et al. Rational assembly of hollow microporous carbon spheres as p hosts for long-life sodium-ion batteries. Advanced Energy Materials 2018; 8: 1702267. https://doi.org/10.1002/aenm.201702267.
  • 53. Linares R, Raël S, Berger K, Hinaje M, Lévêque J. PEM single fuel cell as a dedicated power source for high-inductive superconducting coils. International Journal of Hydrogen Energy 2018; 43: 5913–5921. https://doi.org/10.1016/j.ijhydene.2017.09.013.
  • 54. Zihrul P, Hartung I, Kirsch S, Huebner G, Hasché F et al. Voltage cycling induced losses in electrochemically active surface area and in h 2 /air-performance of PEM fuel cells. Journal of Electrochemical Society 2016; 163: F492-F498. https://doi.org/10.1149/2.0561606jes.
  • 55. Macdonald JR. Impedance spectroscopy. Annals of Biomedical Engineering 1992; 20: 289-305. https://doi.org/10.1007/BF02368532.
  • 56. Preis W, Hofer J, Sitte W. Characterization of electrical properties of n-conducting barium titanate as a function of dc-bias and ac-voltage amplitude by application of impedance spectroscopy. Journal of Solid State Electrochemistry 2015; 19: 2439-2444. https://doi.org/10.1007/ s10008-015-2896-6.
  • 57. Hirschorn B, Tribollet B, Orazem ME. On selection of the perturbation amplitude required to avoid nonlinear effects in impedance measurements. Israel Journal of Chemistry 2008; 48: 133-142. https://doi.org/10.1560/ijc.48.3-4.133.
  • 58. Choe HB, Lee HS, Ismail MA, Hussin MW. Evaluation of electrochemical impedance properties of anti- corrosion films by arc thermal metal spraying method. International Journal of Electrochemical Science 2015; 10: 9775-9789.
  • 59. de Leon CP, Walsh FC, Pletcher D, Browning DJ, Lakeman JB. Direct borohydride fuel cells. Journal of Power Sources 2006; 155: 172-181. https://doi.org/10.1016/j.jpowsour.2006.01.011.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis, characterization and catalytic properties of cationic N-heterocyclic carbene silver complexes

Deniz DEMİR ATLI

Integrated 3D-QSAR, molecular docking, and molecular dynamics simulation studies on 1,2,3-triazole based derivatives for designing new acetylcholinesterase inhibitors

Atul Kumar SINGH, Mohammed BOUACHRINE, Shashank KUMAR, Khalil EL KHATABI, Ilham AANOUZ, Reda El-MERNISSI, Mohammed Aziz AJANA, Tahar LAKHLIFI

Development of a functional impedimetric immunosensor for accurate detection of thyroid-stimulating hormone

Engin ASAV

Synthesis, spectroscopic, thermal, crystal structure properties and characterization of new Hofmann-type-like clathrates with 4-aminopyridine and water

Zeki KARTAL, Onur ŞAHİN

Synthesis and characterization of biodegradable palm palmitic acid based bioplastic

Jumat SALIMON, Abd Al-Wali JAPIR, Nadia SALIH

Synthesis of hydroxy benzoin/benzil analogs and investigation of their antioxidant, antimicrobial, enzyme inhibition, and cytotoxic activities

Rezzan ALİYAZICIOĞLU, Şeyda KANBOLAT, Hasan Erdinç SELLİTEPE, Nuran KAHRİMAN, Şengül ALPAY KARAOĞLU, Arif BOZDEVECİ, İnci Selin DOĞAN, Gonca ÇELİK, Ali AYDIN, Nurettin YAYLI, Gözde KILIÇ

Synthesis, spectral characterization, and biological studies of 3,5-disubstituted1,3,4-oxadiazole-2(3H)-thione derivatives

Fikrettin ŞAHİN, Tuğçe ÖZYAZICI, Meriç KÖKSAL

Spectroscopic investigation of defect-state emission in CdSe quantum dots

Gülhan GÜLEROĞLU, Caner ÜNLÜ

Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors

Hiroshi SAKAGAMİ, İlhami GÜLÇİN, Rüya KAYA, Halise İnci GÜL, Mehtap TUĞRAK

Tin-sulfur based catalysts for acetylene hydrochlorination

Xiaoqiang LUO, Gang TIAN, Yunxiao FENG, Yongjun HAN, Li WANG, Songmao CHU, Yunli CAO, Kesheng CAO, Xiaoming HU, Xuejun SHI, Songtian LI, Guoxv HE, Yibo WU, Qingbin LI, Fuxiang LI